我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:
def part_with_predicate(l, pred):
return [i for i in l if pred(i)], [i for i in l if not pred(i)]
这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。
其他回答
为了提高性能,请尝试itertools。
itertools模块标准化了一组快速、内存高效的核心工具,这些工具单独使用或组合使用都很有用。它们一起构成了一个“迭代器代数”,使得用纯Python简洁有效地构造专门的工具成为可能。
出现看到itertools。过滤器或imap。
itertools。iterable ifilter(谓词) 创建一个迭代器,从iterable中过滤元素,只返回谓词为True的元素
例如,按偶数和奇数拆分列表
arr = range(20)
even, odd = reduce(lambda res, next: res[next % 2].append(next) or res, arr, ([], []))
或者概括地说:
def split(predicate, iterable):
return reduce(lambda res, e: res[predicate(e)].append(e) or res, iterable, ([], []))
优点:
最短路径 Predicate对每个元素只应用一次
缺点
需要函数式编程范例的知识
之前的答案似乎并不能满足我所有的四种强迫症:
尽可能的懒惰, 只对原始Iterable求值一次 每个项只计算谓词一次 提供良好的类型注释(适用于python 3.7)
我的解决方案并不漂亮,我不认为我可以推荐使用它,但它是:
def iter_split_on_predicate(predicate: Callable[[T], bool], iterable: Iterable[T]) -> Tuple[Iterator[T], Iterator[T]]:
deque_predicate_true = deque()
deque_predicate_false = deque()
# define a generator function to consume the input iterable
# the Predicate is evaluated once per item, added to the appropriate deque, and the predicate result it yielded
def shared_generator(definitely_an_iterator):
for item in definitely_an_iterator:
print("Evaluate predicate.")
if predicate(item):
deque_predicate_true.appendleft(item)
yield True
else:
deque_predicate_false.appendleft(item)
yield False
# consume input iterable only once,
# converting to an iterator with the iter() function if necessary. Probably this conversion is unnecessary
shared_gen = shared_generator(
iterable if isinstance(iterable, collections.abc.Iterator) else iter(iterable)
)
# define a generator function for each predicate outcome and queue
def iter_for(predicate_value, hold_queue):
def consume_shared_generator_until_hold_queue_contains_something():
if not hold_queue:
try:
while next(shared_gen) != predicate_value:
pass
except:
pass
consume_shared_generator_until_hold_queue_contains_something()
while hold_queue:
print("Yield where predicate is "+str(predicate_value))
yield hold_queue.pop()
consume_shared_generator_until_hold_queue_contains_something()
# return a tuple of two generators
return iter_for(predicate_value=True, hold_queue=deque_predicate_true), iter_for(predicate_value=False, hold_queue=deque_predicate_false)
用下面的测试,我们从print语句中得到如下输出:
t,f = iter_split_on_predicate(lambda item:item>=10,[1,2,3,10,11,12,4,5,6,13,14,15])
print(list(zip(t,f)))
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# [(10, 1), (11, 2), (12, 3), (13, 4), (14, 5), (15, 6)]
我将采用2步方法,将谓词的求值与列表的过滤分离:
def partition(pred, iterable):
xs = list(zip(map(pred, iterable), iterable))
return [x[1] for x in xs if x[0]], [x[1] for x in xs if not x[0]]
就性能而言(除了在iterable的每个成员上只对pred求值一次之外),这样做的好处在于它将大量逻辑从解释器中移出,转移到高度优化的迭代和映射代码中。这可以加快长迭代对象的迭代速度,就像回答中描述的那样。
在表达性方面,它利用了像理解和映射这样的表达性习语。
我基本上喜欢安德斯的方法,因为它非常普遍。下面的版本将分类器放在前面(以匹配过滤器语法),并使用defaultdict(假定已导入)。
def categorize(func, seq):
"""Return mapping from categories to lists
of categorized items.
"""
d = defaultdict(list)
for item in seq:
d[func(item)].append(item)
return d