我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

还有另一个答案,简短但“邪恶”(用于理解列表的副作用)。

digits = list(range(10))
odd = [x.pop(i) for i, x in enumerate(digits) if x % 2]

>>> odd
[1, 3, 5, 7, 9]

>>> digits
[0, 2, 4, 6, 8]

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

你可以在Python中进行惰性函数编程,像这样:

partition = lambda l, c: map(
  lambda iii: (i for ii in iii for i in ii),
  zip(*(([], [e]) if c(e) else ([e], []) for e in l)))

函数式编程很优雅,但在Python中不是这样。如果你知道你的列表中没有None值,也可以参考这个例子:

partition = lambda l, c: map(
  filter(lambda x: x is not None, l),
  zip(*((None, e) if c(e) else (e, None) for e in l)))

我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。

我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。

在这儿……

from numpy import where as wh, array as arr

midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())

我基本上喜欢安德斯的方法,因为它非常普遍。下面的版本将分类器放在前面(以匹配过滤器语法),并使用defaultdict(假定已导入)。

def categorize(func, seq):
    """Return mapping from categories to lists
    of categorized items.
    """
    d = defaultdict(list)
    for item in seq:
        d[func(item)].append(item)
    return d

第一步(pre-OP-edit):使用集合:

mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]

myset = set(mylist)
goodset = set(goodvals)

print list(myset.intersection(goodset))  # [1, 3, 7]
print list(myset.difference(goodset))    # [2, 4, 5, 6]

这对可读性(IMHO)和性能都有好处。

第二步(post-OP-edit):

创建一个好的扩展列表:

IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])

这将提高性能。否则,你现在的情况在我看来还不错。