我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
def partition(pred, seq):
return reduce( lambda (yes, no), x: (yes+[x], no) if pred(x) else (yes, no+[x]), seq, ([], []) )
其他回答
就我个人而言,我喜欢你引用的版本,假设你已经有了一个好的列表。如果没有,就像这样:
good = filter(lambda x: is_good(x), mylist)
bad = filter(lambda x: not is_good(x), mylist)
当然,这真的非常类似于使用列表理解,就像你最初做的,但用一个函数而不是一个查找:
good = [x for x in mylist if is_good(x)]
bad = [x for x in mylist if not is_good(x)]
总的来说,我发现列表推导式的美学非常令人满意。当然,如果您实际上不需要保留顺序,也不需要重复,那么在集合上使用交集和差分方法也会很好。
受到@gnibbler伟大(但简洁!)回答的启发,我们可以应用该方法映射到多个分区:
from collections import defaultdict
def splitter(l, mapper):
"""Split an iterable into multiple partitions generated by a callable mapper."""
results = defaultdict(list)
for x in l:
results[mapper(x)] += [x]
return results
然后可以使用splitter,如下所示:
>>> l = [1, 2, 3, 4, 2, 3, 4, 5, 6, 4, 3, 2, 3]
>>> split = splitter(l, lambda x: x % 2 == 0) # partition l into odds and evens
>>> split.items()
>>> [(False, [1, 3, 3, 5, 3, 3]), (True, [2, 4, 2, 4, 6, 4, 2])]
这适用于有更复杂映射的两个以上分区(也适用于迭代器):
>>> import math
>>> l = xrange(1, 23)
>>> split = splitter(l, lambda x: int(math.log10(x) * 5))
>>> split.items()
[(0, [1]),
(1, [2]),
(2, [3]),
(3, [4, 5, 6]),
(4, [7, 8, 9]),
(5, [10, 11, 12, 13, 14, 15]),
(6, [16, 17, 18, 19, 20, 21, 22])]
或者用字典来映射:
>>> map = {'A': 1, 'X': 2, 'B': 3, 'Y': 1, 'C': 2, 'Z': 3}
>>> l = ['A', 'B', 'C', 'C', 'X', 'Y', 'Z', 'A', 'Z']
>>> split = splitter(l, map.get)
>>> split.items()
(1, ['A', 'Y', 'A']), (2, ['C', 'C', 'X']), (3, ['B', 'Z', 'Z'])]
不确定这是否是一个好方法,但也可以这样做
IMAGE_TYPES = ('.jpg','.jpeg','.gif','.bmp','.png')
files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi')]
images, anims = reduce(lambda (i, a), f: (i + [f], a) if f[2] in IMAGE_TYPES else (i, a + [f]), files, ([], []))
你可以在Python中进行惰性函数编程,像这样:
partition = lambda l, c: map(
lambda iii: (i for ii in iii for i in ii),
zip(*(([], [e]) if c(e) else ([e], []) for e in l)))
函数式编程很优雅,但在Python中不是这样。如果你知道你的列表中没有None值,也可以参考这个例子:
partition = lambda l, c: map(
filter(lambda x: x is not None, l),
zip(*((None, e) if c(e) else (e, None) for e in l)))
之前的答案似乎并不能满足我所有的四种强迫症:
尽可能的懒惰, 只对原始Iterable求值一次 每个项只计算谓词一次 提供良好的类型注释(适用于python 3.7)
我的解决方案并不漂亮,我不认为我可以推荐使用它,但它是:
def iter_split_on_predicate(predicate: Callable[[T], bool], iterable: Iterable[T]) -> Tuple[Iterator[T], Iterator[T]]:
deque_predicate_true = deque()
deque_predicate_false = deque()
# define a generator function to consume the input iterable
# the Predicate is evaluated once per item, added to the appropriate deque, and the predicate result it yielded
def shared_generator(definitely_an_iterator):
for item in definitely_an_iterator:
print("Evaluate predicate.")
if predicate(item):
deque_predicate_true.appendleft(item)
yield True
else:
deque_predicate_false.appendleft(item)
yield False
# consume input iterable only once,
# converting to an iterator with the iter() function if necessary. Probably this conversion is unnecessary
shared_gen = shared_generator(
iterable if isinstance(iterable, collections.abc.Iterator) else iter(iterable)
)
# define a generator function for each predicate outcome and queue
def iter_for(predicate_value, hold_queue):
def consume_shared_generator_until_hold_queue_contains_something():
if not hold_queue:
try:
while next(shared_gen) != predicate_value:
pass
except:
pass
consume_shared_generator_until_hold_queue_contains_something()
while hold_queue:
print("Yield where predicate is "+str(predicate_value))
yield hold_queue.pop()
consume_shared_generator_until_hold_queue_contains_something()
# return a tuple of two generators
return iter_for(predicate_value=True, hold_queue=deque_predicate_true), iter_for(predicate_value=False, hold_queue=deque_predicate_false)
用下面的测试,我们从print语句中得到如下输出:
t,f = iter_split_on_predicate(lambda item:item>=10,[1,2,3,10,11,12,4,5,6,13,14,15])
print(list(zip(t,f)))
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# Evaluate predicate.
# Yield where predicate is True
# Yield where predicate is False
# [(10, 1), (11, 2), (12, 3), (13, 4), (14, 5), (15, 6)]