我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

其他回答

不确定这是否是一个好方法,但也可以这样做

IMAGE_TYPES = ('.jpg','.jpeg','.gif','.bmp','.png')
files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi')]
images, anims = reduce(lambda (i, a), f: (i + [f], a) if f[2] in IMAGE_TYPES else (i, a + [f]), files, ([], []))

这是这个问题的另一个解决方案。我需要一个尽可能快的解决方案。这意味着只对列表进行一次迭代,并且最好是O(1)用于向结果列表之一添加数据。这与sastanin提供的解决方案非常相似,只是更短:

from collections import deque

def split(iterable, function):
    dq_true = deque()
    dq_false = deque()

    # deque - the fastest way to consume an iterator and append items
    deque((
      (dq_true if function(item) else dq_false).append(item) for item in iterable
    ), maxlen=0)

    return dq_true, dq_false

此时,可以按照如下方式使用该函数:

lower, higher = split([0,1,2,3,4,5,6,7,8,9], lambda x: x < 5)

selected, other = split([0,1,2,3,4,5,6,7,8,9], lambda x: x in {0,4,9})

如果你对结果的deque对象不满意,你可以很容易地将其转换为list、set或任何你喜欢的对象(例如list(lower))。转换要快得多,直接构建列表。

该方法保持项目的顺序,以及任何副本。

一个基于生成器的版本,如果你能忍受一个或两个原始列表的反转。

设置…

random.seed(1234)
a = list(range(10))
random.shuffle(a)
a
[2, 8, 3, 5, 6, 4, 9, 0, 1, 7]

至于分裂……

(list((a.pop(j) for j, y in [(len(a)-i-1, x) for i,x in enumerate(a[::-1])] if y%2 == 0))[::-1], a)
([2, 8, 6, 4, 0], [3, 5, 9, 1, 7])

Another list of tuples of locations and each element is built in reverse order. In a generator wrapped round that each element is tested against the predicate (here test for even) and if True then the element is poped using previously computed locations. We are working backwards along the list so poping elements out does not change positions closer to the beginning of the list. A wrapping list() evaluates the generator and a final revers [::-1] puts the elements back in the right order. The original list "a" now only contains elements that for which the predicate is False.

就我个人而言,我喜欢你引用的版本,假设你已经有了一个好的列表。如果没有,就像这样:

good = filter(lambda x: is_good(x), mylist)
bad = filter(lambda x: not is_good(x), mylist)

当然,这真的非常类似于使用列表理解,就像你最初做的,但用一个函数而不是一个查找:

good = [x for x in mylist if is_good(x)]
bad  = [x for x in mylist if not is_good(x)]

总的来说,我发现列表推导式的美学非常令人满意。当然,如果您实际上不需要保留顺序,也不需要重复,那么在集合上使用交集和差分方法也会很好。

有时候,列表理解并不是最好的选择!

我根据人们对这个话题的回答做了一个小测试,在一个随机生成的列表上测试。以下是列表的生成(可能有更好的方法,但这不是重点):

good_list = ('.jpg','.jpeg','.gif','.bmp','.png')

import random
import string
my_origin_list = []
for i in xrange(10000):
    fname = ''.join(random.choice(string.lowercase) for i in range(random.randrange(10)))
    if random.getrandbits(1):
        fext = random.choice(good_list)
    else:
        fext = "." + ''.join(random.choice(string.lowercase) for i in range(3))

    my_origin_list.append((fname + fext, random.randrange(1000), fext))

好了

# Parand
def f1():
    return [e for e in my_origin_list if e[2] in good_list], [e for e in my_origin_list if not e[2] in good_list]

# dbr
def f2():
    a, b = list(), list()
    for e in my_origin_list:
        if e[2] in good_list:
            a.append(e)
        else:
            b.append(e)
    return a, b

# John La Rooy
def f3():
    a, b = list(), list()
    for e in my_origin_list:
        (b, a)[e[2] in good_list].append(e)
    return a, b

# Ants Aasma
def f4():
    l1, l2 = tee((e[2] in good_list, e) for e in my_origin_list)
    return [i for p, i in l1 if p], [i for p, i in l2 if not p]

# My personal way to do
def f5():
    a, b = zip(*[(e, None) if e[2] in good_list else (None, e) for e in my_origin_list])
    return list(filter(None, a)), list(filter(None, b))

# BJ Homer
def f6():
    return filter(lambda e: e[2] in good_list, my_origin_list), filter(lambda e: not e[2] in good_list, my_origin_list)

使用cmpthese函数,最好的结果是dbr答案:

f1     204/s  --    -5%   -14%   -15%   -20%   -26%
f6     215/s     6%  --    -9%   -11%   -16%   -22%
f3     237/s    16%    10%  --    -2%    -7%   -14%
f4     240/s    18%    12%     2%  --    -6%   -13%
f5     255/s    25%    18%     8%     6%  --    -8%
f2     277/s    36%    29%    17%    15%     9%  --