我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

我只是想提一下vector(和smart_ptr)只是原始数组(和原始指针)上的一个薄层。 实际上在连续存储器中向量的访问时间比数组快。 下面的代码显示了初始化和访问向量和数组的结果。

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>
#include <vector>
#define SIZE 20000
int main() {
    srand (time(NULL));
    vector<vector<int>> vector2d;
    vector2d.reserve(SIZE);
    int index(0);
    boost::posix_time::ptime start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        vector2d.push_back(vector<int>(SIZE));
    }
    boost::posix_time::ptime start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            vector2d[index][index]++;
        }
    }
    boost::posix_time::ptime end = boost::posix_time::microsec_clock::local_time();
    boost::posix_time::time_duration msdiff = end - start_total;
    cout << "Vector total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Vector access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 


    int index(0);
    int** raw2d = nullptr;
    raw2d = new int*[SIZE];
    start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        raw2d[i] = new int[SIZE];
    }
    start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            raw2d[index][index]++;
        }
    }
    end = boost::posix_time::microsec_clock::local_time();
    msdiff = end - start_total;
    cout << "Array total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Array access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 
    for (int i = 0; i < SIZE; i++) {
        delete [] raw2d[i];
    }
    return 0;
}

输出结果为:

    Vector total time: 925milliseconds.
    Vector access time: 4milliseconds.
    Array total time: 30milliseconds.
    Array access time: 21milliseconds.

所以如果使用得当,速度几乎是一样的。 (正如其他人提到的使用reserve()或resize())。

其他回答

我的笔记本电脑是联想G770 (4gb内存)。

操作系统为Windows 7 64位(笔记本电脑版本)

编译器是MinGW 4.6.1。

IDE为Code::Blocks。

我测试了第一篇文章的源代码。

结果

O2优化

UseArray完成用时2.841秒

UseVector在2.548秒内完成

UseVectorPushBack在11.95秒内完成

全程用时17.342秒

系统暂停

O3优化

UseArray完成用时1.452秒

UseVector在2.514秒内完成

UseVectorPushBack在12.967秒内完成

全程用时16.937秒

在O3优化下,向量的性能更差。

如果你把循环改为

    pixels[i].r = i;
    pixels[i].g = i;
    pixels[i].b = i;

在O2和O3下,数组和矢量的速度几乎相同。

使用以下方法:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseArray完成用时2.196秒 UseVector在4.412秒内完成 UseVectorPushBack在8.017秒内完成 全程用时14.626秒

数组的速度是向量的两倍。

但在更详细地查看代码后,这是预期的;当你遍历向量两次,只遍历数组一次时。注意:当你调整vector的size()时,你不仅是在分配内存,而且还在遍历vector并调用每个成员的构造函数。

稍微重新排列代码,使vector只初始化每个对象一次:

 std::vector<Pixel>  pixels(dimensions * dimensions, Pixel(255,0,0));

现在再做一次同样的计时:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseVector在2.216秒内完成

vector现在的性能只比数组差一点点。在我看来,这种差异是微不足道的,可能是由一大堆与测试无关的事情造成的。

我也会考虑到,你没有正确初始化/销毁像素对象在UseArrray()方法的构造函数/析构函数都没有被调用(这可能不是这个简单的类的问题,但任何稍微复杂(即指针或指针成员)将导致问题。

向量类还调用Pixel构造函数。

每一种都会导致你在计时时运行近一百万次。

编辑:然后是外层…1000个循环,所以要做十亿次ctor调用!

编辑2:看到UseArray案例的分解会很有趣。优化器可以优化整个事情,因为它除了消耗CPU外没有其他效果。

好吧,因为vector::resize()比普通内存分配(由malloc)做更多的处理。

尝试在复制构造函数中设置断点(定义它以便可以设置断点!),就会增加处理时间。

Martin York的回答让我很困扰,因为他似乎试图掩盖初始化问题。但他将冗余的默认构造确定为性能问题的根源是正确的。

[编辑:Martin的回答不再建议更改默认构造函数。]

对于眼前的问题,你当然可以调用2参数版本的向量<Pixel> ctor:

std::vector<Pixel> pixels(dimension * dimension, Pixel(255, 0, 0));

如果你想用一个常数值初始化,这是一种常见的情况。但更普遍的问题是:如何有效地初始化比常数值更复杂的东西?

为此,您可以使用back_insert_iterator,这是一个迭代器适配器。这里有一个int类型的向量的例子,尽管一般的思想也适用于像素:

#include <iterator>
// Simple functor return a list of squares: 1, 4, 9, 16...
struct squares {
    squares() { i = 0; }
    int operator()() const { ++i; return i * i; }

private:
    int i;
};

...

std::vector<int> v;
v.reserve(someSize);     // To make insertions efficient
std::generate_n(std::back_inserter(v), someSize, squares());

或者,您可以使用copy()或transform()来代替generate_n()。

缺点是,构造初始值的逻辑需要移动到一个单独的类中,这比将其放在原位更不方便(尽管c++ 1x中的lambdas使这更好)。此外,我希望这仍然不会像基于malloc()的非stl版本那样快,但我希望它会接近,因为它只对每个元素进行一次构造。