我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
我需要在我的一个项目中打印一个二叉树,为此我准备了一个java类TreePrinter,其中一个示例输出是:
[+]
/ \
/ \
/ \
/ \
/ \
[*] \
/ \ [-]
[speed] [2] / \
[45] [12]
下面是TreePrinter类和TextNode类的代码。为了打印任何树,你可以用TextNode类创建一个等效的树。
import java.util.ArrayList;
public class TreePrinter {
public TreePrinter(){
}
public static String TreeString(TextNode root){
ArrayList layers = new ArrayList();
ArrayList bottom = new ArrayList();
FillBottom(bottom, root); DrawEdges(root);
int height = GetHeight(root);
for(int i = 0; i s.length()) min = s.length();
if(!n.isEdge) s += "[";
s += n.text;
if(!n.isEdge) s += "]";
layers.set(n.depth, s);
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i temp = new ArrayList();
for(int i = 0; i 0) temp.get(i-1).left = x;
temp.add(x);
}
temp.get(count-1).left = n.left;
n.left.depth = temp.get(count-1).depth+1;
n.left = temp.get(0);
DrawEdges(temp.get(count-1).left);
}
if(n.right != null){
int count = n.right.x - (n.x + n.text.length() + 2);
ArrayList temp = new ArrayList();
for(int i = 0; i 0) temp.get(i-1).right = x;
temp.add(x);
}
temp.get(count-1).right = n.right;
n.right.depth = temp.get(count-1).depth+1;
n.right = temp.get(0);
DrawEdges(temp.get(count-1).right);
}
}
private static void FillBottom(ArrayList bottom, TextNode n){
if(n == null) return;
FillBottom(bottom, n.left);
if(!bottom.isEmpty()){
int i = bottom.size()-1;
while(bottom.get(i).isEdge) i--;
TextNode last = bottom.get(i);
if(!n.isEdge) n.x = last.x + last.text.length() + 3;
}
bottom.add(n);
FillBottom(bottom, n.right);
}
private static boolean isLeaf(TextNode n){
return (n.left == null && n.right == null);
}
private static int GetHeight(TextNode n){
if(n == null) return 0;
int l = GetHeight(n.left);
int r = GetHeight(n.right);
return Math.max(l, r) + 1;
}
}
class TextNode {
public String text;
public TextNode parent, left, right;
public boolean isEdge;
public int x, depth;
public TextNode(String text){
this.text = text;
parent = null; left = null; right = null;
isEdge = false;
x = 0; depth = 0;
}
}
最后,这里是一个打印给定样本的测试类:
public class Test {
public static void main(String[] args){
TextNode root = new TextNode("+");
root.left = new TextNode("*"); root.left.parent = root;
root.right = new TextNode("-"); root.right.parent = root;
root.left.left = new TextNode("speed"); root.left.left.parent = root.left;
root.left.right = new TextNode("2"); root.left.right.parent = root.left;
root.right.left = new TextNode("45"); root.right.left.parent = root.right;
root.right.right = new TextNode("12"); root.right.right.parent = root.right;
System.out.println(TreePrinter.TreeString(root));
}
}
其他回答
试试这个:
public static void print(int[] minHeap, int minWidth) {
int size = minHeap.length;
int level = log2(size);
int maxLength = (int) Math.pow(2, level) * minWidth;
int currentLevel = -1 ;
int width = maxLength;
for (int i = 0; i < size; i++) {
if (log2(i + 1) > currentLevel) {
currentLevel++;
System.out.println();
width = maxLength / (int) Math.pow(2, currentLevel);
}
System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
}
System.out.println();
}
private static int log2(int n) {
return (int) (Math.log(n) / Math.log(2));
}
这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。
参数minWidth表示底部行中块的长度。
用一张图片来说明想法并展示结果。
在控制台打印:
500
700 300
200 400
简单代码:
public int getHeight()
{
if(rootNode == null) return -1;
return getHeight(rootNode);
}
private int getHeight(Node node)
{
if(node == null) return -1;
return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
}
public void printBinaryTree(Node rootNode)
{
Queue<Node> rootsQueue = new LinkedList<Node>();
Queue<Node> levelQueue = new LinkedList<Node>();
levelQueue.add(rootNode);
int treeHeight = getHeight();
int firstNodeGap;
int internalNodeGap;
int copyinternalNodeGap;
while(true)
{
System.out.println("");
internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);
copyinternalNodeGap = internalNodeGap;
firstNodeGap = internalNodeGap/2;
boolean levelFirstNode = true;
while(!levelQueue.isEmpty())
{
internalNodeGap = copyinternalNodeGap;
Node currNode = levelQueue.poll();
if(currNode != null)
{
if(levelFirstNode)
{
while(firstNodeGap > 0)
{
System.out.format("%s", " ");
firstNodeGap--;
}
levelFirstNode =false;
}
else
{
while(internalNodeGap>0)
{
internalNodeGap--;
System.out.format("%s", " ");
}
}
System.out.format("%3d",currNode.data);
rootsQueue.add(currNode);
}
}
--treeHeight;
while(!rootsQueue.isEmpty())
{
Node currNode = rootsQueue.poll();
if(currNode != null)
{
levelQueue.add(currNode.left);
levelQueue.add(currNode.right);
}
}
if(levelQueue.isEmpty()) break;
}
}
迈克尔。克鲁兹曼,我不得不说,这人不错。这很有用。
然而,上面的方法只适用于个位数:如果您要使用多个数字,结构将会错位,因为您使用的是空格而不是制表符。
至于我后来的代码,我需要更多的数字,所以我自己编写了一个程序。
它现在有一些bug,现在我感觉很懒去纠正它们,但它打印得非常漂亮,节点可以接受更大数量的数字。
这棵树不会像问题提到的那样,但它旋转了270度:)
public static void printBinaryTree(TreeNode root, int level){
if(root==null)
return;
printBinaryTree(root.right, level+1);
if(level!=0){
for(int i=0;i<level-1;i++)
System.out.print("|\t");
System.out.println("|-------"+root.val);
}
else
System.out.println(root.val);
printBinaryTree(root.left, level+1);
}
将此函数与您自己指定的TreeNode一起放置,并保持初始级别为0,并享受!
以下是一些输出示例:
| | |-------11
| |-------10
| | |-------9
|-------8
| | |-------7
| |-------6
| | |-------5
4
| |-------3
|-------2
| |-------1
| | | |-------10
| | |-------9
| |-------8
| | |-------7
|-------6
| |-------5
4
| |-------3
|-------2
| |-------1
唯一的问题是延伸的分支;我会尽快解决这个问题,但在此之前你也可以使用它。
根据VasyaNovikov的回答。改进了一些Java魔术:泛型和函数接口。
/**
* Print a tree structure in a pretty ASCII fromat.
* @param prefix Currnet previx. Use "" in initial call!
* @param node The current node. Pass the root node of your tree in initial call.
* @param getChildrenFunc A {@link Function} that returns the children of a given node.
* @param isTail Is node the last of its sibblings. Use true in initial call. (This is needed for pretty printing.)
* @param <T> The type of your nodes. Anything that has a toString can be used.
*/
private <T> void printTreeRec(String prefix, T node, Function<T, List<T>> getChildrenFunc, boolean isTail) {
String nodeName = node.toString();
String nodeConnection = isTail ? "└── " : "├── ";
log.debug(prefix + nodeConnection + nodeName);
List<T> children = getChildrenFunc.apply(node);
for (int i = 0; i < children.size(); i++) {
String newPrefix = prefix + (isTail ? " " : "│ ");
printTreeRec(newPrefix, children.get(i), getChildrenFunc, i == children.size()-1);
}
}
初始调用示例:
Function<ChecksumModel, List<ChecksumModel>> getChildrenFunc = node -> getChildrenOf(node)
printTreeRec("", rootNode, getChildrenFunc, true);
将输出如下内容
└── rootNode
├── childNode1
├── childNode2
│ ├── childNode2.1
│ ├── childNode2.2
│ └── childNode2.3
├── childNode3
└── childNode4
public static class Node<T extends Comparable<T>> {
T value;
Node<T> left, right;
public void insertToTree(T v) {
if (value == null) {
value = v;
return;
}
if (v.compareTo(value) < 0) {
if (left == null) {
left = new Node<T>();
}
left.insertToTree(v);
} else {
if (right == null) {
right = new Node<T>();
}
right.insertToTree(v);
}
}
public void printTree(OutputStreamWriter out) throws IOException {
if (right != null) {
right.printTree(out, true, "");
}
printNodeValue(out);
if (left != null) {
left.printTree(out, false, "");
}
}
private void printNodeValue(OutputStreamWriter out) throws IOException {
if (value == null) {
out.write("<null>");
} else {
out.write(value.toString());
}
out.write('\n');
}
// use string and not stringbuffer on purpose as we need to change the indent at each recursion
private void printTree(OutputStreamWriter out, boolean isRight, String indent) throws IOException {
if (right != null) {
right.printTree(out, true, indent + (isRight ? " " : " | "));
}
out.write(indent);
if (isRight) {
out.write(" /");
} else {
out.write(" \\");
}
out.write("----- ");
printNodeValue(out);
if (left != null) {
left.printTree(out, false, indent + (isRight ? " | " : " "));
}
}
}
将打印:
/----- 20
| \----- 15
/----- 14
| \----- 13
/----- 12
| | /----- 11
| \----- 10
| \----- 9
8
| /----- 7
| /----- 6
| | \----- 5
\----- 4
| /----- 3
\----- 2
\----- 1
对于输入
8 4 12 2 6 10 14 1 3 5 7 9 11 13 20 15
这是@anurag回答的一个变体——看到额外的|让我很烦