我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
下面是可视化树的另一种方法:将节点保存为xml文件,然后让浏览器显示层次结构:
class treeNode{
int key;
treeNode left;
treeNode right;
public treeNode(int key){
this.key = key;
left = right = null;
}
public void printNode(StringBuilder output, String dir){
output.append("<node key='" + key + "' dir='" + dir + "'>");
if(left != null)
left.printNode(output, "l");
if(right != null)
right.printNode(output, "r");
output.append("</node>");
}
}
class tree{
private treeNode treeRoot;
public tree(int key){
treeRoot = new treeNode(key);
}
public void insert(int key){
insert(treeRoot, key);
}
private treeNode insert(treeNode root, int key){
if(root == null){
treeNode child = new treeNode(key);
return child;
}
if(key < root.key)
root.left = insert(root.left, key);
else if(key > root.key)
root.right = insert(root.right, key);
return root;
}
public void saveTreeAsXml(){
StringBuilder strOutput = new StringBuilder();
strOutput.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
treeRoot.printNode(strOutput, "root");
try {
PrintWriter writer = new PrintWriter("C:/tree.xml", "UTF-8");
writer.write(strOutput.toString());
writer.close();
}
catch (FileNotFoundException e){
}
catch(UnsupportedEncodingException e){
}
}
}
下面是测试它的代码:
tree t = new tree(1);
t.insert(10);
t.insert(5);
t.insert(4);
t.insert(20);
t.insert(40);
t.insert(30);
t.insert(80);
t.insert(60);
t.insert(50);
t.saveTreeAsXml();
输出如下所示:
其他回答
这是打印树的一个非常简单的解决方案。它不是那么漂亮,但它真的很简单:
enum { kWidth = 6 };
void PrintSpace(int n)
{
for (int i = 0; i < n; ++i)
printf(" ");
}
void PrintTree(struct Node * root, int level)
{
if (!root) return;
PrintTree(root->right, level + 1);
PrintSpace(level * kWidth);
printf("%d", root->data);
PrintTree(root->left, level + 1);
}
样例输出:
106 105 104 103 102 101 100
一个Scala解决方案,改编自Vasya Novikov的答案,专门用于二叉树:
/** An immutable Binary Tree. */
case class BTree[T](value: T, left: Option[BTree[T]], right: Option[BTree[T]]) {
/* Adapted from: http://stackoverflow.com/a/8948691/643684 */
def pretty: String = {
def work(tree: BTree[T], prefix: String, isTail: Boolean): String = {
val (line, bar) = if (isTail) ("└── ", " ") else ("├── ", "│")
val curr = s"${prefix}${line}${tree.value}"
val rights = tree.right match {
case None => s"${prefix}${bar} ├── ∅"
case Some(r) => work(r, s"${prefix}${bar} ", false)
}
val lefts = tree.left match {
case None => s"${prefix}${bar} └── ∅"
case Some(l) => work(l, s"${prefix}${bar} ", true)
}
s"${curr}\n${rights}\n${lefts}"
}
work(this, "", true)
}
}
你的树每一层需要两倍的距离:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ / \ / \ / \ h i j k l m n o
你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:
[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]
如果你的树没有满,你需要在数组中包含空值:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ \ / \ \ h i k l m o [[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]
然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。
using map...
{
Map<Integer,String> m = new LinkedHashMap<>();
tn.printNodeWithLvl(node,l,m);
for(Entry<Integer, String> map :m.entrySet()) {
System.out.println(map.getValue());
}
then....method
private void printNodeWithLvl(Node node,int l,Map<Integer,String> m) {
if(node==null) {
return;
}
if(m.containsKey(l)) {
m.put(l, new StringBuilder(m.get(l)).append(node.value).toString());
}else {
m.put(l, node.value+"");
}
l++;
printNodeWithLvl( node.left,l,m);
printNodeWithLvl(node.right,l,m);
}
}
试试这个:
public static void print(int[] minHeap, int minWidth) {
int size = minHeap.length;
int level = log2(size);
int maxLength = (int) Math.pow(2, level) * minWidth;
int currentLevel = -1 ;
int width = maxLength;
for (int i = 0; i < size; i++) {
if (log2(i + 1) > currentLevel) {
currentLevel++;
System.out.println();
width = maxLength / (int) Math.pow(2, currentLevel);
}
System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
}
System.out.println();
}
private static int log2(int n) {
return (int) (Math.log(n) / Math.log(2));
}
这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。
参数minWidth表示底部行中块的长度。
用一张图片来说明想法并展示结果。