假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
当前回答
Davoud的解决方案非常好,但当嵌套的字典也包含字典列表时,并不能给出令人满意的结果,但他的代码可以适应这种情况:
def flatten_dict(d):
items = []
for k, v in d.items():
try:
if (type(v)==type([])):
for l in v: items.extend(flatten_dict(l).items())
else:
items.extend(flatten_dict(v).items())
except AttributeError:
items.append((k, v))
return dict(items)
其他回答
如果你使用pandas,有一个函数隐藏在pandas.io.json中。_normalize1调用nested_to_record来完成这个操作。
from pandas.io.json._normalize import nested_to_record
flat = nested_to_record(my_dict, sep='_')
1在熊猫0.24版本。X及以上版本使用panda .io.json.normalize(不带_)
你可以使用递归来平展你的字典。
import collections
def flatten(
nested_dict,
seperator='.',
name=None,
):
flatten_dict = {}
if not nested_dict:
return flatten_dict
if isinstance(
nested_dict,
collections.abc.MutableMapping,
):
for key, value in nested_dict.items():
if name is not None:
flatten_dict.update(
flatten(
nested_dict=value,
seperator=seperator,
name=f'{name}{seperator}{key}',
),
)
else:
flatten_dict.update(
flatten(
nested_dict=value,
seperator=seperator,
name=key,
),
)
else:
flatten_dict[name] = nested_dict
return flatten_dict
if __name__ == '__main__':
nested_dict = {
1: 'a',
2: {
3: 'c',
4: {
5: 'e',
},
6: [1, 2, 3, 4, 5, ],
},
}
print(
flatten(
nested_dict=nested_dict,
),
)
输出:
{
"1":"a",
"2.3":"c",
"2.4.5":"e",
"2.6":[1, 2, 3, 4, 5]
}
这并不局限于字典,而是实现.items()的每个映射类型。进一步列表更快,因为它避免了if条件。尽管如此,功劳还是归于伊姆兰:
def flatten(d, parent_key=''):
items = []
for k, v in d.items():
try:
items.extend(flatten(v, '%s%s_' % (parent_key, k)).items())
except AttributeError:
items.append(('%s%s' % (parent_key, k), v))
return dict(items)
Davoud的解决方案非常好,但当嵌套的字典也包含字典列表时,并不能给出令人满意的结果,但他的代码可以适应这种情况:
def flatten_dict(d):
items = []
for k, v in d.items():
try:
if (type(v)==type([])):
for l in v: items.extend(flatten_dict(l).items())
else:
items.extend(flatten_dict(v).items())
except AttributeError:
items.append((k, v))
return dict(items)
利用递归,保持简单和人类可读:
def flatten_dict(dictionary, accumulator=None, parent_key=None, separator="."):
if accumulator is None:
accumulator = {}
for k, v in dictionary.items():
k = f"{parent_key}{separator}{k}" if parent_key else k
if isinstance(v, dict):
flatten_dict(dictionary=v, accumulator=accumulator, parent_key=k)
continue
accumulator[k] = v
return accumulator
调用很简单:
new_dict = flatten_dict(dictionary)
or
new_dict = flatten_dict(dictionary, separator="_")
如果我们想改变默认分隔符。
稍微分解一下:
当函数第一次被调用时,它只被调用传递我们想要扁平化的字典。这里的累加器参数支持递归,稍后我们将看到。因此,我们将accumulator实例化到一个空字典中,我们将在其中放入原始字典中的所有嵌套值。
if accumulator is None:
accumulator = {}
当我们遍历字典的值时,我们为每个值构造一个键。对于第一次调用,parent_key参数将为None,而对于每个嵌套字典,它将包含指向它的键,因此我们将该键前置。
k = f"{parent_key}{separator}{k}" if parent_key else k
如果键k指向的值v是一个字典,函数调用自身,传递嵌套的字典、累加器(通过引用传递,因此对它的所有更改都是在同一个实例上完成的)和键k,这样我们就可以构造连接键。注意continue语句。我们想要跳过if语句块之外的下一行,这样嵌套的字典就不会在键k下的累加器中结束。
if isinstance(v, dict):
flatten_dict(dict=v, accumulator=accumulator, parent_key=k)
continue
那么,如果值v不是字典,我们该怎么办呢?把它原封不动地放在累加器里。
accumulator[k] = v
一旦完成,我们只返回累加器,原始的字典参数保持不变。
NOTE
这只适用于有字符串作为键的字典。它将与实现__repr__方法的哈希对象一起工作,但将产生不想要的结果。