我想在一个数据帧列中计算NA值的数量。假设我的数据帧称为df,我正在考虑的列的名称是col。我提出的方法如下:
sapply(df$col, function(x) sum(length(which(is.na(x)))))
这是一个好的/最有效的方法吗?
我想在一个数据帧列中计算NA值的数量。假设我的数据帧称为df,我正在考虑的列的名称是col。我提出的方法如下:
sapply(df$col, function(x) sum(length(which(is.na(x)))))
这是一个好的/最有效的方法吗?
当前回答
如果你在每一列中寻找空值,然后一个接一个地打印,那么你可以使用这个。简单的解决方案。
lapply(df, function(x) { length(which(is.na(x)))})
其他回答
如果你在一个数据帧中寻找每一列的NA计数,那么:
na_count <-sapply(x, function(y) sum(length(which(is.na(y)))))
应该会给你一个包含每列计数的列表。
na_count <- data.frame(na_count)
应该像这样在数据框架中输出数据:
----------------------
| row.names | na_count
------------------------
| column_1 | count
获得所有列NA计数的一个快速简单的Tidyverse解决方案是使用summarise_all(),我认为这比使用purrr或sapply更容易读取解决方案
library(tidyverse)
# Example data
df <- tibble(col1 = c(1, 2, 3, NA),
col2 = c(NA, NA, "a", "b"))
df %>% summarise_all(~ sum(is.na(.)))
#> # A tibble: 1 x 2
#> col1 col2
#> <int> <int>
#> 1 1 2
或者使用更现代的across()函数:
df %>% summarise(across(everything(), ~ sum(is.na(.))))
在summary()输出中,该函数还计算NAs的数量,因此如果需要几个变量中NAs的总和,可以使用该函数。
如果你在每一列中寻找空值,然后一个接一个地打印,那么你可以使用这个。简单的解决方案。
lapply(df, function(x) { length(which(is.na(x)))})
如果您希望计算整个数据帧中的NAs数量,也可以使用
sum(is.na(df))