我如何有效地获得一个NumPy数组中每个唯一值的频率计数?

>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]

当前回答

import pandas as pd
import numpy as np

print(pd.Series(name_of_array).value_counts())

其他回答

这是迄今为止最通用和性能最好的解决方案;很惊讶它还没有发布。

import numpy as np

def unique_count(a):
    unique, inverse = np.unique(a, return_inverse=True)
    count = np.zeros(len(unique), np.int)
    np.add.at(count, inverse, 1)
    return np.vstack(( unique, count)).T

print unique_count(np.random.randint(-10,10,100))

与目前接受的答案不同,它适用于任何可排序的数据类型(不仅仅是正整数),并且具有最佳性能;唯一重要的开销是np.unique所做的排序。

from collections import Counter
x = array( [1,1,1,2,2,2,5,25,1,1] )
mode = counter.most_common(1)[0][0]

尽管这个问题已经得到了回答,但我建议使用一种不同的方法,即numpy.histogram。这样的函数给定一个序列,它返回其元素分组在箱子中的频率。

但是要注意:它在这个例子中是有效的,因为数字是整数。如果它们是实数,那么这个解就不适用了。

>>> from numpy import histogram
>>> y = histogram (x, bins=x.max()-1)
>>> y
(array([5, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1]),
 array([  1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.,
        12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.,  20.,  21.,  22.,
        23.,  24.,  25.]))

使用pandas模块:

>>> import pandas as pd
>>> import numpy as np
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> pd.value_counts(x)
1     5
2     3
25    1
5     1
dtype: int64

看看np.bincount:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html

import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]

然后:

zip(ii,y[ii]) 
# [(1, 5), (2, 3), (5, 1), (25, 1)]

or:

np.vstack((ii,y[ii])).T
# array([[ 1,  5],
         [ 2,  3],
         [ 5,  1],
         [25,  1]])

或者你想结合计数和唯一值。