pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引
df_filtered = df[df['column'] == value]
这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?
df_filtered = df.mask(lambda x: x['column'] == value)
pandas中的大多数操作都可以通过操作符链接(groupby、聚合、应用等)来完成,但我发现过滤行的唯一方法是通过普通的括号索引
df_filtered = df[df['column'] == value]
这是没有吸引力的,因为它要求我分配df到一个变量,然后才能过滤它的值。还有像下面这样的吗?
df_filtered = df.mask(lambda x: x['column'] == value)
当前回答
我提供了更多的例子。这个答案和https://stackoverflow.com/a/28159296/是一样的
我将添加其他编辑,使这篇文章更有用。
pandas.DataFrame.query 查询正是为了这个目的。考虑数据框架df
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(
np.random.randint(10, size=(10, 5)),
columns=list('ABCDE')
)
df
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
让我们使用查询过滤所有行D > B
df.query('D > B')
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
我们把它串起来
df.query('D > B').query('C > B')
# equivalent to
# df.query('D > B and C > B')
# but defeats the purpose of demonstrating chaining
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
其他回答
如果将列设置为作为索引进行搜索,则可以使用DataFrame.xs()获取横截面。这没有查询答案那么通用,但在某些情况下可能很有用。
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(
np.random.randint(3, size=(10, 5)),
columns=list('ABCDE')
)
df
# Out[55]:
# A B C D E
# 0 0 2 2 2 2
# 1 1 1 2 0 2
# 2 0 2 0 0 2
# 3 0 2 2 0 1
# 4 0 1 1 2 0
# 5 0 0 0 1 2
# 6 1 0 1 1 1
# 7 0 0 2 0 2
# 8 2 2 2 2 2
# 9 1 2 0 2 1
df.set_index(['A', 'D']).xs([0, 2]).reset_index()
# Out[57]:
# A D B C E
# 0 0 2 2 2 2
# 1 0 2 1 1 0
我的答案和其他人的相似。如果您不想创建一个新函数,您可以使用pandas已经为您定义的函数。使用管道法。
df.pipe(lambda d: d[d['column'] == value])
过滤器可以使用Pandas查询链接:
df = pd.DataFrame(np.random.randn(30, 3), columns=['a','b','c'])
df_filtered = df.query('a > 0').query('0 < b < 2')
过滤器也可以在单个查询中组合:
df_filtered = df.query('a > 0 and 0 < b < 2')
来自@lodagro的答案很棒。我将通过泛化掩码函数来扩展它:
def mask(df, f):
return df[f(df)]
然后你可以这样做:
df.mask(lambda x: x[0] < 0).mask(lambda x: x[1] > 0)
我也有同样的问题,只是我想把这些标准组合成一个OR条件。Wouter Overmeire给出的格式将两个标准组合成一个AND条件,使得两个条件都必须满足:
In [96]: df
Out[96]:
A B C D
a 1 4 9 1
b 4 5 0 2
c 5 5 1 0
d 1 3 9 6
In [99]: df[(df.A == 1) & (df.D == 6)]
Out[99]:
A B C D
d 1 3 9 6
但我发现,如果你把每个条件……== True),并将标准与管道连接,这些标准在OR条件中组合,只要其中任何一个为真就满足:
df[((df.A==1) == True) | ((df.D==6) == True)]