我需要一个简单的浮点舍入函数,这样:

double round(double);

round(0.1) = 0
round(-0.1) = 0
round(-0.9) = -1

我可以在math.h中找到ceil()和floor() -但没有round()。

它是否以另一个名字出现在标准c++库中,或者它是否丢失了??


当前回答

我在asm的x86架构和MS VS特定的c++中使用round的以下实现:

__forceinline int Round(const double v)
{
    int r;
    __asm
    {
        FLD     v
        FISTP   r
        FWAIT
    };
    return r;
}

UPD:返回双值

__forceinline double dround(const double v)
{
    double r;
    __asm
    {
        FLD     v
        FRNDINT
        FSTP    r
        FWAIT
    };
    return r;
}

输出:

dround(0.1): 0.000000000000000
dround(-0.1): -0.000000000000000
dround(0.9): 1.000000000000000
dround(-0.9): -1.000000000000000
dround(1.1): 1.000000000000000
dround(-1.1): -1.000000000000000
dround(0.49999999999999994): 0.000000000000000
dround(-0.49999999999999994): -0.000000000000000
dround(0.5): 0.000000000000000
dround(-0.5): -0.000000000000000

其他回答

我是这样做的:

#include <cmath.h>

using namespace std;

double roundh(double number, int place){

    /* place = decimal point. Putting in 0 will make it round to whole
                              number. putting in 1 will round to the
                              tenths digit.
    */

    number *= 10^place;
    int istack = (int)floor(number);
    int out = number-istack;
    if (out < 0.5){
        floor(number);
        number /= 10^place;
        return number;
    }
    if (out > 0.4) {
        ceil(number);
        number /= 10^place;
        return number;
    }
}

不需要实现任何东西,所以我不确定为什么这么多答案涉及定义、函数或方法。

C99中

我们有下面的and和header <tgmath.h>用于类型泛型宏。

#include <math.h>
double round (double x);
float roundf (float x);
long double roundl (long double x);

如果您不能编译它,那么您可能遗漏了数学库。类似的命令适用于我拥有的每个C编译器(几个)。

gcc -lm -std=c99 ...

c++ 11

我们在#include <cmath>中有以下和其他依赖于IEEE双精度浮点数的重载。

#include <math.h>
double round (double x);
float round (float x);
long double round (long double x);
double round (T x);

在std名称空间中也有等价物。

如果不能编译,则可能使用C编译而不是c++。下面的基本命令对于g++ 6.3.1、x86_64-w64-mingw32-g++ 6.3.0、clang-x86_64++ 3.8.0和Visual c++ 2015 Community既不会产生错误也不会产生警告。

g++ -std=c++11 -Wall

有序数除法

当除两个序数时,其中T是短的,int,长,或另一个序数,舍入表达式是这样的。

T roundedQuotient = (2 * integerNumerator + 1)
    / (2 * integerDenominator);

精度

毫无疑问,浮点运算中会出现奇怪的错误,但这只是在数字出现时才会出现,与四舍五入无关。

来源不仅仅是IEEE浮点数表示的尾数中的有效数字的数量,它与我们作为人类的十进制思维有关。

10是5和2的乘积,5和2是相对质数。因此,IEEE浮点标准不可能完美地表示为所有二进制数字表示的十进制数。

这不是舍入算法的问题。在选择类型和设计计算、数据输入和数字显示时,应该考虑到数学现实。如果应用程序显示的数字显示了这些十进制-二进制转换问题,那么该应用程序在视觉上表达了数字现实中不存在的、应该更改的准确性。

基于Kalaxy的响应,下面是一个模板化的解决方案,它将任何浮点数舍入为基于自然舍入的最接近的整数类型。如果值超出了整数类型的范围,它还会在调试模式下抛出一个错误,从而大致作为一个可行的库函数。

    // round a floating point number to the nearest integer
    template <typename Arg>
    int Round(Arg arg)
    {
#ifndef NDEBUG
        // check that the argument can be rounded given the return type:
        if (
            (Arg)std::numeric_limits<int>::max() < arg + (Arg) 0.5) ||
            (Arg)std::numeric_limits<int>::lowest() > arg - (Arg) 0.5)
            )
        {
            throw std::overflow_error("out of bounds");
        }
#endif

        return (arg > (Arg) 0.0) ? (int)(r + (Arg) 0.5) : (int)(r - (Arg) 0.5);
    }

如果你最终想要将round()函数的双输出转换为int型,那么这个问题的可接受的解决方案将如下所示:

int roundint(double r) {
  return (int)((r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5));
}

当传入均匀随机值时,在我的机器上大约为8.88 ns。

据我所知,下面的功能是等效的,但在我的机器上是2.48 ns,具有显著的性能优势:

int roundint (double r) {
  int tmp = static_cast<int> (r);
  tmp += (r-tmp>=.5) - (r-tmp<=-.5);
  return tmp;
}

性能更好的原因之一是跳过了分支。

// Convert the float to a string
// We might use stringstream, but it looks like it truncates the float to only
//5 decimal points (maybe that's what you want anyway =P)

float MyFloat = 5.11133333311111333;
float NewConvertedFloat = 0.0;
string FirstString = " ";
string SecondString = " ";
stringstream ss (stringstream::in | stringstream::out);
ss << MyFloat;
FirstString = ss.str();

// Take out how ever many decimal places you want
// (this is a string it includes the point)
SecondString = FirstString.substr(0,5);
//whatever precision decimal place you want

// Convert it back to a float
stringstream(SecondString) >> NewConvertedFloat;
cout << NewConvertedFloat;
system("pause");

这可能是一种低效的肮脏的转换方式,但见鬼,它是有效的,哈哈。这很好,因为它适用于实际的浮点数。不仅仅是视觉上影响输出。