我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:
for i in range(0, len(ints), 4):
# dummy op for example code
foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]
不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?
while ints:
foo += ints[0] * ints[1] + ints[2] * ints[3]
ints[0:4] = []
不过,感觉还是不太对。: - /
相关问题:在Python中如何将列表分割成大小均匀的块?
我希望通过将迭代器从列表中删除,我不是简单地复制列表的一部分。生成器可以被切片,它们将自动仍然是一个生成器,而列表将被切片成1000个条目的大块,这是较低的效率。
def iter_group(iterable, batch_size:int):
length = len(iterable)
start = batch_size*-1
end = 0
while(end < length):
start += batch_size
end += batch_size
if type(iterable) == list:
yield (iterable[i] for i in range(start,min(length-1,end)))
else:
yield iterable[start:end]
用法:
items = list(range(1,1251))
for item_group in iter_group(items, 1000):
for item in item_group:
print(item)
我从来不想填充我的块,所以这个要求是必要的。我发现在任何可迭代对象上工作的能力也是必需的。鉴于此,我决定扩展公认的答案,https://stackoverflow.com/a/434411/1074659。
如果由于需要比较和筛选填充值而不需要填充,则这种方法的性能会受到轻微的影响。然而,对于大块大小,这个实用程序是非常高性能的。
#!/usr/bin/env python3
from itertools import zip_longest
_UNDEFINED = object()
def chunker(iterable, chunksize, fillvalue=_UNDEFINED):
"""
Collect data into chunks and optionally pad it.
Performance worsens as `chunksize` approaches 1.
Inspired by:
https://docs.python.org/3/library/itertools.html#itertools-recipes
"""
args = [iter(iterable)] * chunksize
chunks = zip_longest(*args, fillvalue=fillvalue)
yield from (
filter(lambda val: val is not _UNDEFINED, chunk)
if chunk[-1] is _UNDEFINED
else chunk
for chunk in chunks
) if fillvalue is _UNDEFINED else chunks
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
适用于任何序列:
text = "I am a very, very helpful text"
for group in chunker(text, 7):
print(repr(group),)
# 'I am a ' 'very, v' 'ery hel' 'pful te' 'xt'
print('|'.join(chunker(text, 10)))
# I am a ver|y, very he|lpful text
animals = ['cat', 'dog', 'rabbit', 'duck', 'bird', 'cow', 'gnu', 'fish']
for group in chunker(animals, 3):
print(group)
# ['cat', 'dog', 'rabbit']
# ['duck', 'bird', 'cow']
# ['gnu', 'fish']
还有另一个答案,它的优点是:
1)容易理解
2)适用于任何可迭代对象,而不仅仅是序列(上面的一些答案会阻塞文件句柄)
3)不立即将数据块加载到内存
4)不会在内存中生成对同一迭代器的块长的引用列表
5)在列表的末尾没有填充填充值
话虽如此,我还没有计算它的时间,所以它可能比一些更聪明的方法慢,而且考虑到用例,一些优势可能是无关紧要的。
def chunkiter(iterable, size):
def inneriter(first, iterator, size):
yield first
for _ in xrange(size - 1):
yield iterator.next()
it = iter(iterable)
while True:
yield inneriter(it.next(), it, size)
In [2]: i = chunkiter('abcdefgh', 3)
In [3]: for ii in i:
for c in ii:
print c,
print ''
...:
a b c
d e f
g h
Update:
A couple of drawbacks due to the fact the inner and outer loops are pulling values from the same iterator:
1) continue doesn't work as expected in the outer loop - it just continues on to the next item rather than skipping a chunk. However, this doesn't seem like a problem as there's nothing to test in the outer loop.
2) break doesn't work as expected in the inner loop - control will wind up in the inner loop again with the next item in the iterator. To skip whole chunks, either wrap the inner iterator (ii above) in a tuple, e.g. for c in tuple(ii), or set a flag and exhaust the iterator.