如何在Python中找到列表的平均值?

[1, 2, 3, 4]  ⟶  2.5

当前回答

编辑:

我添加了另外两种获取列表平均值的方法(仅适用于Python 3.8+)。下面是我做的比较:

import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd
import math

LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000

l = list(range(LIST_RANGE))

def mean1():
    return statistics.mean(l)


def mean2():
    return sum(l) / len(l)


def mean3():
    return np.mean(l)


def mean4():
    return np.array(l).mean()


def mean5():
    return reduce(lambda x, y: x + y / float(len(l)), l, 0)

def mean6():
    return pd.Series(l).mean()


def mean7():
    return statistics.fmean(l)


def mean8():
    return math.fsum(l) / len(l)


for func in [mean1, mean2, mean3, mean4, mean5, mean6, mean7, mean8 ]:
    print(f"{func.__name__} took: ",  timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))

以下是我得到的结果:

mean1 took:  0.09751558300000002
mean2 took:  0.005496791999999973
mean3 took:  0.07754683299999998
mean4 took:  0.055743208000000044
mean5 took:  0.018134082999999968
mean6 took:  0.6663848750000001
mean7 took:  0.004305374999999945
mean8 took:  0.003203333000000086

有趣!看起来math.fsum(l) / len(l)是最快的方法,然后是statistics.fmean(l),然后是sum(l) / len(l)。好了!

感谢阿斯克勒庇俄斯为我展示了另外两种方式!


旧的回答:

就效率和速度而言,以下是我测试其他答案的结果:

# test mean caculation

import timeit
import statistics
import numpy as np
from functools import reduce
import pandas as pd

LIST_RANGE = 10
NUMBERS_OF_TIMES_TO_TEST = 10000

l = list(range(LIST_RANGE))

def mean1():
    return statistics.mean(l)


def mean2():
    return sum(l) / len(l)


def mean3():
    return np.mean(l)


def mean4():
    return np.array(l).mean()


def mean5():
    return reduce(lambda x, y: x + y / float(len(l)), l, 0)

def mean6():
    return pd.Series(l).mean()



for func in [mean1, mean2, mean3, mean4, mean5, mean6]:
    print(f"{func.__name__} took: ",  timeit.timeit(stmt=func, number=NUMBERS_OF_TIMES_TO_TEST))

结果是:

mean1 took:  0.17030245899968577
mean2 took:  0.002183011999932205
mean3 took:  0.09744236000005913
mean4 took:  0.07070840100004716
mean5 took:  0.022754742999950395
mean6 took:  1.6689282460001778

所以很明显赢家是: Sum (l) / len(l)

其他回答

如果你想要的不仅仅是平均值(又名平均),你可以看看scipy的统计:

from scipy import stats
l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
print(stats.describe(l))

# DescribeResult(nobs=9, minmax=(2, 78), mean=20.11111111111111, 
# variance=572.3611111111111, skewness=1.7791785448425341, 
# kurtosis=1.9422716419666397)

在Udacity的问题中,我也有一个类似的问题要解决。而不是一个内置的函数,我编码:

def list_mean(n):

    summing = float(sum(n))
    count = float(len(n))
    if n == []:
        return False
    return float(summing/count)

比平时长得多,但对于初学者来说,这是相当具有挑战性的。

l = [15, 18, 2, 36, 12, 78, 5, 6, 9]

l = map(float,l)
print '%.2f' %(sum(l)/len(l))

结合上面的几个答案,我提出了以下与reduce一起工作的方法,并且不假设你在reduce函数中有L可用:

from operator import truediv

L = [15, 18, 2, 36, 12, 78, 5, 6, 9]

def sum_and_count(x, y):
    try:
        return (x[0] + y, x[1] + 1)
    except TypeError:
        return (x + y, 2)

truediv(*reduce(sum_and_count, L))

# prints 
20.11111111111111

两者都可以在一个整数或至少10个十进制值上给出接近的值。但如果你真的考虑长浮动值,这两者可能是不同的。方法可以根据你想要达到的目标而有所不同。

>>> l = [15, 18, 2, 36, 12, 78, 5, 6, 9]
>>> print reduce(lambda x, y: x + y, l) / len(l)
20
>>> sum(l)/len(l)
20

浮动值

>>> print reduce(lambda x, y: x + y, l) / float(len(l))
20.1111111111
>>> print sum(l)/float(len(l))
20.1111111111

@Andrew Clark的说法是正确的。