这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :

% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);


%Sort the data
data1= sort(data); % data1= data  when no sorting done


%Start a stopwatch timer to measure the execution time
tic;

for i=1:100000

    for j=1:arraySize

        if data1(j)>=128
            sum=sum + data1(j);
        end
    end
end

toc;

ExeTimeWithSorting = toc - tic;

上述MATLAB代码的结果如下:

  a: Elapsed time (without sorting) = 3479.880861 seconds.
  b: Elapsed time (with sorting ) = 2377.873098 seconds.

校对:Soup

  a: Elapsed time (without sorting) = 19.8761 sec.
  b: Elapsed time (with sorting ) = 7.37778 sec.

基于这一点,看来MATLAB比C执行慢了175倍,没有分类,比C执行慢了350倍,换言之,(分支预测)MATLAB执行效果为1.46x,C执行效果为2.7x。

其他回答

C++ 中经常使用的布尔操作在编译的程序中产生许多分支。 如果这些分支是内部循环, 且难以预测, 则它们可以大大减缓执行速度。 布尔变量以8位数整数存储, 值为 0, 值为假值, 值为 1 值为真值 。

布尔变量被超额确定,因为所有以布尔变量作为输入变量的操作员都检查输入值是否有比 0 或 1 的其他值,但以布尔值作为输出的操作员不能产生比 0 或 1. 的其他值。 这样,以布尔变量作为输入的操作效率就比必要低。 请举例说明 :

bool a, b, c, d;
c = a && b;
d = a || b;

这通常由汇编者以下列方式加以实施:

bool a, b, c, d;
if (a != 0) {
    if (b != 0) {
        c = 1;
    }
    else {
        goto CFALSE;
    }
}
else {
    CFALSE:
    c = 0;
}
if (a == 0) {
    if (b == 0) {
        d = 0;
    }
    else {
        goto DTRUE;
    }
}
else {
    DTRUE:
    d = 1;
}

此代码远非最佳 。 如果出现错误, 分支可能要花很长的时间。 如果可以肯定地知道, 布林操作没有比 0 和 1 的其他值, 则可以使布林操作效率更高。 原因是, 编译者没有做出这样的假设, 如果变量未初始化或者来自未知来源, 则这些变量可能有其他值。 如果 a 和 b 被初始化为有效值, 或者如果它们来自产生布林输出的操作员, 则上述代码可以优化。 最优化的代码看起来是这样 :

char a = 0, b = 1, c, d;
c = a & b;
d = a | b;

使用字符代替布尔, 以便使用比位操作员( & 和 & ) 而不是布尔操作员( 和 ) 。 比位操作员是单项指令, 只需要一个时钟周期 。 OR 操作员( 和 ) 工作, 即使 a 和 b 的值比 0 或 1. 操作员( ) 和 Exclusive 或 操作员( ) 可能会产生不一致的结果, 如果操作员的值比 0 和 1 不同 , 操作员( ) 和 Exclusive 或操作员( ) 可能会产生不一致的结果 。

~ 无法用于非。 相反, 您可以在变量上做一个布尔, 变量为 0 或 1 , 使用 XOR, 使用 1 :

bool a, b;
b = !a;

可优化到 :

char a = 0, b;
b = a ^ 1;

a \\ b 无法被 & b 替换为 & b 表达式, 如果 b 是假的表达式, 则该表达式不应被评估( \ \ 将不评估 b, & will) 。 同样, a \ b 也不能被 \ b 替换为 \ b , 如果 b 是真实的, 则该表达式不应被评估 。

如果操作符是变量, 则使用比位运算符更有利 :

bool a; double x, y, z;
a = x > y && z < 5.0;

在大多数情况下是最佳的(除非您预期 表达式会产生很多分支错误)。

这个问题根植于CPUs的分支预测模型。

通过多分支预测和分支处理缓存来提高教学取回率(但现在的实际 CPU 仍然不能在每时钟周期中做出多个支流控制,但Haswell 和后来在循环缓冲中有效释放的小循环除外。 现代 CPU 可以预测多个未取用的分支, 以利用大毗连区块中的提取。 )

当您对元素进行分类时,分支预测很容易预测正确,除非在边界正确,允许指示有效通过CPU管道,而不必倒转和正确选择错误预测路径。

官方的回答是来自

英特尔 -- -- 避免误用英特尔分公司的成本 -- -- 分公司和循环重组以防止误用科学论文 -- -- 分公司预测计算机建筑书籍:J.L. Hennessy, D.A. Patterson:计算机结构:定量方法 科学出版物中的文章:T.Y. Yeh, Y.N. Patt在分支预测方面做了许多这些。

你也可以从这张可爱的图表中看到 树枝预测器为什么会被混淆。

原始代码中的每个元素都是随机值

data[c] = std::rand() % 256;

所以预测器会随着 : rand () 的打击而改变两边。

另一方面,一旦对预测进行分类, 预测器将首先进入一个 强烈未被采纳的状态, 当值变化到高值时, 预测器将分三步走, 从强烈未被采纳到强烈被采纳。


在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)

这个问题已经回答过很多次了。我还是想提醒大家注意另一个有趣的分析。

最近,这个例子(稍作修改)也被用来演示如何在 Windows 上显示一个代码在程序本身中被剖析。 顺便提一下, 作者还展示了如何使用结果来确定代码的大部分时间用于分解和未排序的案例中。 最后, 文章还展示了如何使用HAL( Hardware Empaction Develople) 的一个鲜为人知的特征来确定未分类案例中的分支错误发生多少。

连结就在这里:自我辩护示范