我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

随着Tensorflow的最新更新,你可以检查它如下:

tf.test.is_gpu_available( cuda_only=False, min_cuda_compute_capability=None)

如果GPU正在被Tensorflow使用,返回True,否则返回False。

如果你想要设备device_name,可以输入:tf.test.gpu_device_name()。 从这里获取更多细节

其他回答

我发现从命令行查询gpu是最简单的:

nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.98                 Driver Version: 384.98                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 980 Ti  Off  | 00000000:02:00.0  On |                  N/A |
| 22%   33C    P8    13W / 250W |   5817MiB /  6075MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1060      G   /usr/lib/xorg/Xorg                            53MiB |
|    0     25177      C   python                                      5751MiB |
+-----------------------------------------------------------------------------+

如果你的学习是一个后台过程,pid从 Jobs -p应该匹配nvidia-smi的pid

这是我用来列出tf可用设备的行。会话直接从bash:

python -c "import os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'; import tensorflow as tf; sess = tf.Session(); [print(x) for x in sess.list_devices()]; print(tf.__version__);"

它将打印可用的设备和tensorflow版本,例如:

_DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456, 10588614393916958794)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 12320120782636586575)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 13378821206986992411)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:GPU:0, GPU, 32039954023, 12481654498215526877)
1.14.0

也许可以试试这个:

print(tf.reduce_sum(tf.random. sum);正常((1000、1000))))

看系统是否返回张量

根据网站

与tensorflow 2.0 >=

import tensorflow as tf
sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))

如果你用的是张量流2。x使用:

sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))