在一个C程序中,我尝试了以下操作(只是为了检查行为)

 x = 5 % (-3);
 y = (-5) % (3);
 z = (-5) % (-3); 

printf("%d ,%d ,%d", x, y, z); 

在gcc中输出为(2,-2,-2)我以为每次都会有积极的结果。模量可以是负的吗?有人能解释一下这种行为吗?


当前回答

其他答案已经在C99或更高版本中解释过,涉及负操作数的整数除法总是截断为零。

注意,在C89中,结果向上舍入还是向下舍入是由实现定义的。因为(a/b) * b + a%b在所有标准中都等于a,包含负操作数的%的结果也是在C89中实现定义的。

其他回答

根据C99规格:a == (a / b) * b + a % b

我们可以写一个函数来计算(a % b) == a - (a / b) * b!

int remainder(int a, int b)
{
    return a - (a / b) * b;
}

对于模运算,我们可以有以下函数(假设b > 0)

int mod(int a, int b)
{
    int r = a % b;
    return r < 0 ? r + b : r;
}

我的结论是C中的a % b是一个余数运算,而不是一个模运算。

C中的%操作符不是模操作符而是余数操作符。

模运算符和余数运算符不同于负值。

对于余数运算符,结果的符号与被除数(分子)的符号相同,而对于模运算符,结果的符号与除数(分母)的符号相同。

C将a % b的%操作定义为:

  a == (a / b * b) + a % b

用/表示整型除法,并截断为0。这是对0(而不是负无穷)的截断,它将%定义为余数运算符而不是模运算符。

模算子给出余数。 c中的模算子通常取分子的符号

X = 5%(-3)这里分子是正的,所以结果是2 Y =(-5) %(3)分子为负,结果为-2 Z =(-5) %(-3)这里分子是负的所以结果是-2

此外,模(余数)运算符只能用于整型,不能用于浮点数。

在数学中,这些惯例的起源,没有断言模算术应该产生一个正的结果。

Eg.

1 mod 5 = 1,但也可以等于-4。也就是说,1/5从0得到余数1或从5得到余数-4。(都是5的因数)

同样的, -1 mod 5 = -1,它也可以等于4。也就是说,-1/5从0得到余数-1或从-5得到余数4。(都是5的因数)

要进一步阅读,请参阅数学中的等价类。

模量可以是负的吗?

%可以是负数,因为它是余数运算符,是除法后的余数,而不是欧几里得除法后的余数。由于C99的结果可能是0,负或正。

 // a % b
 7 %  3 -->  1  
 7 % -3 -->  1  
-7 %  3 --> -1  
-7 % -3 --> -1  

要的模OP是一个经典的欧几里得模,而不是%。

我以为每次都会有积极的结果。

要执行定义良好的欧几里得模,只要a/b有定义,a,b是任意符号,且结果永远不为负:

int modulo_Euclidean(int a, int b) {
  int m = a % b;
  if (m < 0) {
    // m += (b < 0) ? -b : b; // avoid this form: it is UB when b == INT_MIN
    m = (b < 0) ? m - b : m + b;
  }
  return m;
}

modulo_Euclidean( 7,  3) -->  1  
modulo_Euclidean( 7, -3) -->  1  
modulo_Euclidean(-7,  3) -->  2  
modulo_Euclidean(-7, -3) -->  2