假设我想计算每个组中不同值的比例。例如,使用mtcars数据,我如何计算齿轮数的相对频率由am(自动/手动)与dplyr一步走?

library(dplyr)
data(mtcars)
mtcars <- tbl_df(mtcars)

# count frequency
mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n())

# am gear  n
#  0    3 15 
#  0    4  4 
#  1    4  8  
#  1    5  5 

我想达到的目标:

am gear  n rel.freq
 0    3 15      0.7894737
 0    4  4      0.2105263
 1    4  8      0.6153846
 1    5  5      0.3846154

当前回答

这个答案是基于Matifou的回答。

首先,我修改了它,以确保我不会通过使用scipen选项将freq列作为科学符号列返回。

然后我将答案乘以100以得到一个百分比,而不是小数,以使频率列更容易以百分比的形式阅读。

getOption("scipen") 
options("scipen"=10) 
mtcars %>%
count(am, gear) %>% 
mutate(freq = (n / sum(n)) * 100)

其他回答

我为这个重复任务写了一个小函数:

count_pct <- function(df) {
  return(
    df %>%
      tally %>% 
      mutate(n_pct = 100*n/sum(n))
  )
}

然后我可以像这样使用它:

mtcars %>% 
  group_by(cyl) %>% 
  count_pct

它返回:

# A tibble: 3 x 3
    cyl     n n_pct
  <dbl> <int> <dbl>
1     4    11  34.4
2     6     7  21.9
3     8    14  43.8

尽管有很多答案,但还有一种方法使用prop。与dplyr或data.table结合使用。

library(dplyr)

mtcars %>%
  group_by(am, gear) %>% 
  tally() %>% 
  mutate(freq = prop.table(n))

#> # A tibble: 4 × 4
#> # Groups:   am [2]
#>      am  gear     n  freq
#>   <dbl> <dbl> <int> <dbl>
#> 1     0     3    15 0.789
#> 2     0     4     4 0.211
#> 3     1     4     8 0.615
#> 4     1     5     5 0.385
library(data.table)
cars_dt <- as.data.table(mtcars)
cars_dt[, .(n = .N), keyby = .(am, gear)][, freq := prop.table(n), by = "am"][]

#>    am gear  n      freq
#> 1:  0    3 15 0.7894737
#> 2:  0    4  4 0.2105263
#> 3:  1    4  8 0.6153846
#> 4:  1    5  5 0.3846154

使用reprex v2.0.2创建于2022-10-22

下面是在dplyr 0.7.1上实现Henrik解决方案的通用函数。

freq_table <- function(x, 
                       group_var, 
                       prop_var) {
  group_var <- enquo(group_var)
  prop_var  <- enquo(prop_var)
  x %>% 
    group_by(!!group_var, !!prop_var) %>% 
    summarise(n = n()) %>% 
    mutate(freq = n /sum(n)) %>% 
    ungroup
}

这个答案是基于Matifou的回答。

首先,我修改了它,以确保我不会通过使用scipen选项将freq列作为科学符号列返回。

然后我将答案乘以100以得到一个百分比,而不是小数,以使频率列更容易以百分比的形式阅读。

getOption("scipen") 
options("scipen"=10) 
mtcars %>%
count(am, gear) %>% 
mutate(freq = (n / sum(n)) * 100)

下面是一个基于R的答案,使用了aggregate和ave:

df1 <- with(mtcars, aggregate(list(n = mpg), list(am = am, gear = gear), length))
df1$prop <- with(df1, n/ave(n, am, FUN = sum))
#Also with prop.table
#df1$prop <- with(df1, ave(n, am, FUN = prop.table))
df1

#  am gear  n      prop
#1  0    3 15 0.7894737
#2  0    4  4 0.2105263
#3  1    4  8 0.6153846
#4  1    5  5 0.3846154 

我们也可以用道具。表,但输出显示不同。

prop.table(table(mtcars$am, mtcars$gear), 1)
   
#            3         4         5
#  0 0.7894737 0.2105263 0.0000000
#  1 0.0000000 0.6153846 0.3846154