给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
当前回答
要查看包含nan的列和包含nan的行:
isnulldf = df.isnull()
columns_containing_nulls = isnulldf.columns[isnulldf.any()]
rows_containing_nulls = df[isnulldf[columns_containing_nulls].any(axis='columns')].index
only_nulls_df = df[columns_containing_nulls].loc[rows_containing_nulls]
print(only_nulls_df)
其他回答
您可以使用df.isnull().sum()。它显示了每个特征的所有列和总nan。
如果您希望查找包含NaN值的列并获得列名列表,则该代码可以工作。
na_names = df.isnull().any()
list(na_names.where(na_names == True).dropna().index)
如果要查找值都是nan的列,可以将any替换为all。
我使用这三行代码打印出包含至少一个空值的列名:
for column in dataframe:
if dataframe[column].isnull().any():
print('{0} has {1} null values'.format(column, dataframe[column].isnull().sum()))
Features_with_na =[feature用于数据帧中的特征。列if dataframe[features].isnull().sum()>0]
对于features_with_na中的feature: Print (feature, np.round(dataframe[feature].isnull().mean(), 4), '%缺失值') 打印(features_with_na)
它将为dataframe中的每一列提供缺失值的%
要查看包含nan的列和包含nan的行:
isnulldf = df.isnull()
columns_containing_nulls = isnulldf.columns[isnulldf.any()]
rows_containing_nulls = df[isnulldf[columns_containing_nulls].any(axis='columns')].index
only_nulls_df = df[columns_containing_nulls].loc[rows_containing_nulls]
print(only_nulls_df)