有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

给已经好的答案锦上添花。一个实际的例子是postgres数据库中的哈希索引和b树索引。

哈希索引形成一个哈希表索引来访问磁盘上的数据,而btree顾名思义使用的是btree数据结构。

大O时间是O(1) vs O(logN)

目前不鼓励在postgres中使用哈希索引,因为在现实生活中,特别是在数据库系统中,实现无冲突的哈希是非常困难的(可能导致O(N)最坏情况的复杂性),正因为如此,使它们具有崩溃安全性就更加困难了(在postgres中称为提前写日志- WAL)。

在这种情况下进行这种权衡,因为O(logN)对于索引来说已经足够好了,而实现O(1)非常困难,而且时间差并不重要。

其他回答

假设您正在嵌入式系统上实现一个黑名单,其中0到1,000,000之间的数字可能被列入黑名单。这就给你留下了两个选择:

使用1,000,000位的bitset 使用黑名单整数的排序数组,并使用二进制搜索来访问它们

对bitset的访问将保证常量访问。从时间复杂度来看,它是最优的。从理论和实践的角度来看(它是O(1),常量开销极低)。

不过,你可能更喜欢第二种解决方案。特别是如果您希望黑名单整数的数量非常小,因为这样内存效率更高。

即使您不为内存稀缺的嵌入式系统开发,我也可以将任意限制从1,000,000增加到1,000,000,000,000,并提出相同的论点。那么bitset将需要大约125G的内存。保证最坏情况复杂度为O(1)可能无法说服您的老板为您提供如此强大的服务器。

在这里,我强烈倾向于二叉搜索(O(log n))或二叉树(O(log n))而不是O(1)位集。在实践中,最坏情况复杂度为O(n)的哈希表可能会击败所有这些算法。

在重新设计程序时,发现一个过程用O(1)而不是O(lgN)进行了优化,但如果不是这个程序的瓶颈,就很难理解O(1) alg。这样就不用用O(1)算法了 当O(1)需要大量的内存而你无法提供时,而O(lgN)的时间可以接受。

我在这里的回答是,在随机矩阵的所有行的快速随机加权选择是一个例子,当m不是太大时,复杂度为O(m)的算法比复杂度为O(log(m))的算法更快。

人们已经回答了你的确切问题,所以我要回答一个稍微不同的问题,人们来这里时可能会想到这个问题。

许多“O(1)时间”算法和数据结构实际上只需要预期的O(1)时间,这意味着它们的平均运行时间是O(1),可能仅在某些假设下。

常见的例子:哈希表,“数组列表”的扩展(也就是动态大小的数组/向量)。

在这种情况下,您可能更喜欢使用保证时间绝对受对数限制的数据结构或算法,即使它们的平均性能可能更差。 一个例子可能是平衡二叉搜索树,它的运行时间平均较差,但在最坏的情况下更好。

在实时情况下,当你需要一个固定的上界时,你会选择一个堆排序,而不是快速排序,因为堆排序的平均行为也是它的最差情况行为。