我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

我一直以来在脑海中想象运行在O(log n)中的算法的最佳方式如下:

如果您将问题大小增加一个乘法量(即将其大小乘以10),则做功仅增加一个加法量。

将此应用于二叉树问题,这样您就有了一个很好的应用程序:如果将二叉树中的节点数加倍,则高度仅增加1(一个加法量)。如果再增加一倍,它仍然只增加了1。(显然,我假设它保持平衡)。这样,当问题规模成倍增加时,你的工作量不会加倍,而只是做了稍微多一点的工作。这就是为什么O(logn)算法非常棒的原因。

其他回答

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

如果你在图形计算器或类似的东西上绘制一个对数函数,你会发现它的上升速度非常慢——甚至比线性函数还要慢。

这就是为什么对数时间复杂度算法备受追捧的原因:即使对于真正大的n(例如,假设n=10^8),它们的性能也超出了可接受的范围。

这个问题已经有了很多好的答案,但我相信我们真的错过了一个重要的答案,那就是图解的答案。

说一个完整的二叉树的高度是O(logn)是什么意思?

下图描述了一个二叉树。请注意,与上面的级别相比,每个级别包含的节点数量是两倍(因此是二进制的):

二进制搜索是一个复杂度为O(logn)的示例。假设图1中树底部的节点表示某个排序集合中的项目。二进制搜索是一种分而治之的算法,图中显示了我们需要(最多)4次比较才能找到我们在这个16项数据集中搜索的记录。

假设我们有一个包含32个元素的数据集。继续上面的图,发现我们现在需要5次比较才能找到我们正在搜索的内容,因为当我们乘以数据量时,树只增长了一层。结果,该算法的复杂性可以用对数级数来描述。

在一张普通纸上绘制对数(n)将生成曲线图,其中曲线的上升速度随着n的增加而减慢:

首先,我建议您阅读以下书籍:;

算法(第4版)

下面是一些函数及其预期的复杂性。数字表示语句执行频率。

以下Big-O复杂性图表也取自bigocheatsheet

最后,非常简单的展示展示了它是如何计算的;

剖析程序的语句执行频率。

分析程序的运行时间(示例)。

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。