我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

分而治之范式中的算法具有复杂性O(logn)。这里有一个例子,计算你自己的幂函数,

int power(int x, unsigned int y)
{
    int temp;
    if( y == 0)
        return 1;
    temp = power(x, y/2);
    if (y%2 == 0)
        return temp*temp;
    else
        return x*temp*temp;
}

从…起http://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/

其他回答

下面的解释是使用完全平衡的二叉树来帮助您理解我们如何获得对数时间复杂度。

二叉树是一种情况,其中大小为n的问题被划分为大小为n/2的子问题,直到我们达到大小为1的问题:

这就是你如何得到O(logn),这是在上面的树上需要完成的工作量,以获得解决方案。

具有O(logn)时间复杂度的常见算法是二进制搜索,其递归关系为T(n/2)+O(1),即在树的每个后续级别上,您将问题分成一半,并执行恒定数量的额外工作。

简单地说:在算法的每一步,你都可以将工作减半。(渐近等价于第三、第四、…)

我想补充一点,树的高度是从根到叶的最长路径的长度,节点的高度是该节点到叶的最大路径的长度。路径表示在两个节点之间遍历树时遇到的节点数。为了实现O(logn)时间复杂度,树应该是平衡的,这意味着任何节点的子节点之间的高度差应该小于或等于1。因此,树并不总是保证时间复杂度O(log n),除非它们是平衡的。实际上,在某些情况下,在最坏情况下,树中搜索的时间复杂度可能为O(n)。

你可以看看平衡树,比如AVL树。这项工作是在插入数据时平衡树,以便在树中搜索时保持(logn)的时间复杂度。

O(logn)有点误导,更准确地说,它是O(log2n),即(以2为底的对数)。

平衡二叉树的高度是O(log2n),因为每个节点都有两个(注意log2n中的“两个”)子节点。因此,具有n个节点的树的高度为log2n。

另一个例子是二进制搜索,它的运行时间为O(log2n),因为在每一步中,您都将搜索空间除以2。

logx到基b=y是b^y=x的倒数

如果有深度为d、大小为n的M元树,则:

遍历整棵树~O(M^d)=O(n)在树中行走一条路径~O(d)=O(logn到基M)