我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

我试了一下:

class dotdict(dict):
    def __getattr__(self, name):
        return self[name]

你也可以尝试__getattribute__。

使每个字典都是一种类型的dotdict就足够了,如果你想从多层字典初始化它,也可以尝试实现__init__。

其他回答

此解决方案是对epool提供的解决方案的改进,以满足OP以一致的方式访问嵌套字典的需求。epool的解决方案不允许访问嵌套字典。

class YAMLobj(dict):
    def __init__(self, args):
        super(YAMLobj, self).__init__(args)
        if isinstance(args, dict):
            for k, v in args.iteritems():
                if not isinstance(v, dict):
                    self[k] = v
                else:
                    self.__setattr__(k, YAMLobj(v))


    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(YAMLobj, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(YAMLobj, self).__delitem__(key)
        del self.__dict__[key]

使用这个类,现在可以执行如下操作:A.B.C.D.

您可以使用SimpleNamespace来实现这一点

from types import SimpleNamespace
# Assign values
args = SimpleNamespace()
args.username = 'admin'

# Retrive values
print(args.username)  # output: admin

最简单的解决方案。

定义一个只有pass语句的类。为该类创建对象并使用点表示法。

class my_dict:
    pass

person = my_dict()
person.id = 1 # create using dot notation
person.phone = 9999
del person.phone # Remove a property using dot notation

name_data = my_dict()
name_data.first_name = 'Arnold'
name_data.last_name = 'Schwarzenegger'

person.name = name_data
person.name.first_name # dot notation access for nested properties - gives Arnold

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。

另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。

我最近遇到了“Box”库,它也做同样的事情。

安装命令:pip install python-box

例子:

from box import Box

mydict = {"key1":{"v1":0.375,
                    "v2":0.625},
          "key2":0.125,
          }
mydict = Box(mydict)

print(mydict.key1.v1)

我发现它比其他现有的库(如dotmap)更有效,当你有大量嵌套字典时,dotmap会产生python递归错误。

链接到图书馆和详细信息:https://pypi.org/project/python-box/