我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
通过pip安装dotmap
pip install dotmap
它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:
from dotmap import DotMap
m = DotMap()
m.hello = 'world'
m.hello
m.hello += '!'
# m.hello and m['hello'] now both return 'world!'
m.val = 5
m.val2 = 'Sam'
最重要的是,你可以将它转换为dict对象:
d = m.toDict()
m = DotMap(d) # automatic conversion in constructor
这意味着如果你想访问的东西已经是字典形式的,你可以把它转换成DotMap来方便访问:
import json
jsonDict = json.loads(text)
data = DotMap(jsonDict)
print data.location.city
最后,它会自动创建新的子DotMap实例,你可以这样做:
m = DotMap()
m.people.steve.age = 31
与Bunch的比较
完全公开:我是DotMap的创造者。我创建它是因为Bunch缺少这些功能
记住添加的顺序项并按此顺序迭代 自动创建子DotMap,当你有很多层次结构时,这节省了时间,并使代码更干净 从字典构造并递归地将所有子字典实例转换为DotMap
其他回答
我最近遇到了“Box”库,它也做同样的事情。
安装命令:pip install python-box
例子:
from box import Box
mydict = {"key1":{"v1":0.375,
"v2":0.625},
"key2":0.125,
}
mydict = Box(mydict)
print(mydict.key1.v1)
我发现它比其他现有的库(如dotmap)更有效,当你有大量嵌套字典时,dotmap会产生python递归错误。
链接到图书馆和详细信息:https://pypi.org/project/python-box/
这是一个老问题,但我最近发现sklearn有一个可通过键访问的实现版本字典,即Bunch https://scikit-learn.org/stable/modules/generated/sklearn.utils.Bunch.html#sklearn.utils.Bunch
这是我从很久以前的一个项目里挖出来的。它可能还可以再优化一点,但就是这样了。
class DotNotation(dict):
__setattr__= dict.__setitem__
__delattr__= dict.__delitem__
def __init__(self, data):
if isinstance(data, str):
data = json.loads(data)
for name, value in data.items():
setattr(self, name, self._wrap(value))
def __getattr__(self, attr):
def _traverse(obj, attr):
if self._is_indexable(obj):
try:
return obj[int(attr)]
except:
return None
elif isinstance(obj, dict):
return obj.get(attr, None)
else:
return attr
if '.' in attr:
return reduce(_traverse, attr.split('.'), self)
return self.get(attr, None)
def _wrap(self, value):
if self._is_indexable(value):
# (!) recursive (!)
return type(value)([self._wrap(v) for v in value])
elif isinstance(value, dict):
return DotNotation(value)
else:
return value
@staticmethod
def _is_indexable(obj):
return isinstance(obj, (tuple, list, set, frozenset))
if __name__ == "__main__":
test_dict = {
"dimensions": {
"length": "112",
"width": "103",
"height": "42"
},
"meta_data": [
{
"id": 11089769,
"key": "imported_gallery_files",
"value": [
"https://example.com/wp-content/uploads/2019/09/unnamed-3.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-2.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-4.jpg"
]
}
]
}
dotted_dict = DotNotation(test_dict)
print(dotted_dict.dimensions.length) # => '112'
print(getattr(dotted_dict, 'dimensions.length')) # => '112'
print(dotted_dict.meta_data[0].key) # => 'imported_gallery_files'
print(getattr(dotted_dict, 'meta_data.0.key')) # => 'imported_gallery_files'
print(dotted_dict.meta_data[0].value) # => ['link1','link2','link2']
print(getattr(dotted_dict, 'meta_data.0.value')) # => ['link1','link2','link3']
print(dotted_dict.meta_data[0].value[2]) # => 'link3'
print(getattr(dotted_dict, 'meta_data.0.value.2')) # => 'link3'
如果你已经在使用pandas,你可以构造一个pandas Series或DataFrame,从中你可以通过点语法访问项目:
1级字典:
import pandas as pd
my_dictionary = pd.Series({
'key1': 'value1',
'key2': 'value2'
})
print(my_dictionary.key1)
# Output: value1
2级字典:
import pandas as pd
my_dictionary = pd.DataFrame({
'key1': {
'inner_key1': 'value1'
},
'key2': {
'inner_key2': 'value2'
}
})
print(my_dictionary.key1.inner_key1)
# Output: value1
请注意,这可能在规范化数据结构(其中每个字典条目都具有相同的结构)下工作得更好。在上面的第二个例子中,得到的DataFrame是:
key1 key2
inner_key1 value1 NaN
inner_key2 NaN value2
基于Kugel的回答,并考虑到Mike Graham的警告,如果我们制作一个包装器呢?
class DictWrap(object):
""" Wrap an existing dict, or create a new one, and access with either dot
notation or key lookup.
The attribute _data is reserved and stores the underlying dictionary.
When using the += operator with create=True, the empty nested dict is
replaced with the operand, effectively creating a default dictionary
of mixed types.
args:
d({}): Existing dict to wrap, an empty dict is created by default
create(True): Create an empty, nested dict instead of raising a KeyError
example:
>>>dw = DictWrap({'pp':3})
>>>dw.a.b += 2
>>>dw.a.b += 2
>>>dw.a['c'] += 'Hello'
>>>dw.a['c'] += ' World'
>>>dw.a.d
>>>print dw._data
{'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}
"""
def __init__(self, d=None, create=True):
if d is None:
d = {}
supr = super(DictWrap, self)
supr.__setattr__('_data', d)
supr.__setattr__('__create', create)
def __getattr__(self, name):
try:
value = self._data[name]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[name] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setattr__(self, name, value):
self._data[name] = value
def __getitem__(self, key):
try:
value = self._data[key]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[key] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setitem__(self, key, value):
self._data[key] = value
def __iadd__(self, other):
if self._data:
raise TypeError("A Nested dict will only be replaced if it's empty")
else:
return other