我对random.seed()在Python中的作用有点困惑。例如,为什么下面的试验会(始终如一地)做它们所做的事情?

>>> import random
>>> random.seed(9001)
>>> random.randint(1, 10)
1
>>> random.randint(1, 10)
3
>>> random.randint(1, 10)
6
>>> random.randint(1, 10)
6
>>> random.randint(1, 10)
7

我找不到关于这方面的好的文件。


当前回答

# Simple Python program to understand random.seed() importance

import random

random.seed(10)

for i in range(5):    
    print(random.randint(1, 100))

多次执行上面的程序…

第一次尝试:输出5个范围为1 ~ 100的随机整数

第二次尝试:打印相同的5个随机数字出现在上面的执行。

第三次尝试:相同

…等等

解释:每次运行上述程序时,我们都将seed设置为10,然后随机生成器将其作为参考变量。然后用一些预定义的公式,生成一个随机数。

因此,在下次执行时将seed设置为10,再次将引用号设置为10,然后再次启动相同的行为…

只要我们重置种子值,它就会给出相同的植物。

注意:改变种子值并运行程序,你会看到一个与前一个不同的随机序列。

其他回答

# Simple Python program to understand random.seed() importance

import random

random.seed(10)

for i in range(5):    
    print(random.randint(1, 100))

多次执行上面的程序…

第一次尝试:输出5个范围为1 ~ 100的随机整数

第二次尝试:打印相同的5个随机数字出现在上面的执行。

第三次尝试:相同

…等等

解释:每次运行上述程序时,我们都将seed设置为10,然后随机生成器将其作为参考变量。然后用一些预定义的公式,生成一个随机数。

因此,在下次执行时将seed设置为10,再次将引用号设置为10,然后再次启动相同的行为…

只要我们重置种子值,它就会给出相同的植物。

注意:改变种子值并运行程序,你会看到一个与前一个不同的随机序列。

下面是一个小测试,演示了给seed()方法注入相同的参数将导致相同的伪随机结果:

# testing random.seed()

import random

def equalityCheck(l):
    state=None
    x=l[0]
    for i in l:
        if i!=x:
            state=False
            break
        else:
            state=True
    return state


l=[]

for i in range(1000):
    random.seed(10)
    l.append(random.random())

print "All elements in l are equal?",equalityCheck(l)

在这种情况下,随机实际上是伪随机。给定一颗种子,它将产生具有均匀分布的数字。但是使用相同的种子,它每次都会生成相同的数字序列。如果你想改变它,你就必须改变你的种子。很多人喜欢根据当前时间或其他东西来生成种子。

随机的。python中的seed(a, version)用于初始化伪随机数生成器(PRNG)。

PRNG是一种生成近似于随机数性质的数列的算法。这些随机数可以使用种子值重新生成。因此,如果您提供种子值,PRNG将使用种子从任意的起始状态开始。

参数a是种子值。如果a值为None,则默认使用当前系统时间。

and version是一个整数,指定如何将参数a转换为整数。缺省值为2。

import random
random.seed(9001)
random.randint(1, 10) #this gives output of 1
# 1

如果你想要复制相同的随机数,那么再次提供相同的种子

random.seed(9001)
random.randint(1, 10) # this will give the same output of 1
# 1

如果你不提供种子,那么它会生成不同的数字,而不是之前的1

random.randint(1, 10) # this gives 7 without providing seed
# 7

如果你提供不同的种子,它会给你一个不同的随机数

random.seed(9002)
random.randint(1, 10) # this gives you 5 not 1
# 5

因此,总的来说,如果您希望复制相同的随机数,请提供种子。确切地说,是同一颗种子。

以下是我的理解。 每当我们设置一个种子值时,就会生成一个“标签”或“引用”。下一个随机。函数调用被附加到这个“标签”,所以下次你调用相同的种子值和随机。函数,会得到相同的结果。

np.random.seed( 3 )
print(np.random.randn()) # output: 1.7886284734303186

np.random.seed( 3 )
print(np.random.rand()) # different function. output: 0.5507979025745755

np.random.seed( 5 )
print(np.random.rand()) # different seed value. output: 0.22199317108973948