找到Python列表中最常见元素的有效方法是什么?

我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:

>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'

当前回答

如果排序和哈希都不可行,这是一个明显的缓慢的解决方案(O(n²)),但相等比较(==)可用:

def most_common(items):
  if not items:
    raise ValueError
  fitems = [] 
  best_idx = 0
  for item in items:   
    item_missing = True
    i = 0
    for fitem in fitems:  
      if fitem[0] == item:
        fitem[1] += 1
        d = fitem[1] - fitems[best_idx][1]
        if d > 0 or (d == 0 and fitems[best_idx][2] > fitem[2]):
          best_idx = i
        item_missing = False
        break
      i += 1
    if item_missing:
      fitems.append([item, 1, i])
  return items[best_idx]

但是,如果你的列表(n)的长度很大,那么让你的项目可哈希或可排序(正如其他答案所建议的那样)几乎总是能更快地找到最常见的元素。哈希时平均为O(n),排序时最差为O(n*log(n))。

其他回答

在这里:

def most_common(l):
    max = 0
    maxitem = None
    for x in set(l):
        count =  l.count(x)
        if count > max:
            max = count
            maxitem = x
    return maxitem

我有一种模糊的感觉,在标准库的某个地方有一个方法可以给你每个元素的计数,但我找不到它。

# use Decorate, Sort, Undecorate to solve the problem

def most_common(iterable):
    # Make a list with tuples: (item, index)
    # The index will be used later to break ties for most common item.
    lst = [(x, i) for i, x in enumerate(iterable)]
    lst.sort()

    # lst_final will also be a list of tuples: (count, index, item)
    # Sorting on this list will find us the most common item, and the index
    # will break ties so the one listed first wins.  Count is negative so
    # largest count will have lowest value and sort first.
    lst_final = []

    # Get an iterator for our new list...
    itr = iter(lst)

    # ...and pop the first tuple off.  Setup current state vars for loop.
    count = 1
    tup = next(itr)
    x_cur, i_cur = tup

    # Loop over sorted list of tuples, counting occurrences of item.
    for tup in itr:
        # Same item again?
        if x_cur == tup[0]:
            # Yes, same item; increment count
            count += 1
        else:
            # No, new item, so write previous current item to lst_final...
            t = (-count, i_cur, x_cur)
            lst_final.append(t)
            # ...and reset current state vars for loop.
            x_cur, i_cur = tup
            count = 1

    # Write final item after loop ends
    t = (-count, i_cur, x_cur)
    lst_final.append(t)

    lst_final.sort()
    answer = lst_final[0][2]

    return answer

print most_common(['x', 'e', 'a', 'e', 'a', 'e', 'e']) # prints 'e'
print most_common(['goose', 'duck', 'duck', 'goose']) # prints 'goose'

以Luiz的回答为基础,但满足“在抽取索引最低的项目时应返回”的条件:

from statistics import mode, StatisticsError

def most_common(l):
    try:
        return mode(l)
    except StatisticsError as e:
        # will only return the first element if no unique mode found
        if 'no unique mode' in e.args[0]:
            return l[0]
        # this is for "StatisticsError: no mode for empty data"
        # after calling mode([])
        raise

例子:

>>> most_common(['a', 'b', 'b'])
'b'
>>> most_common([1, 2])
1
>>> most_common([])
StatisticsError: no mode for empty data
>>> li  = ['goose', 'duck', 'duck']

>>> def foo(li):
         st = set(li)
         mx = -1
         for each in st:
             temp = li.count(each):
             if mx < temp:
                 mx = temp 
                 h = each 
         return h

>>> foo(li)
'duck'

我这样做使用scipy统计模块和lambda:

import scipy.stats
lst = [1,2,3,4,5,6,7,5]
most_freq_val = lambda x: scipy.stats.mode(x)[0][0]
print(most_freq_val(lst))

结果:

 most_freq_val = 5