我在想什么时候应该用Prim的算法,什么时候用Kruskal的算法来寻找最小生成树?它们都有简单的逻辑,同样的最坏情况,唯一的区别是实现可能涉及一些不同的数据结构。那么决定因素是什么呢?
当前回答
如果边可以在线性时间内排序,或者已经排序,Kruskal可以有更好的性能。
如果顶点的边数较多,则Prim更好。
其他回答
当你有一个有很多边的图时,使用Prim算法。
对于具有V个顶点E条边的图,如果使用Fibonacci堆,Kruskal的算法可以在O(E log V)时间内运行,而Prim的算法可以在O(E + V log V)平摊时间内运行。
当你有一个非常密集的图,边比顶点多的时候,Prim的算法在极限上要快得多。Kruskal在典型情况下(稀疏图)性能更好,因为它使用更简单的数据结构。
Kruskal算法的一个重要应用是单链聚类。
考虑n个顶点,你就有了一个完整的图。得到这n个点组成的k个簇。在已排序边集的前n-(k-1)条边上运行Kruskal算法。你得到了具有最大间距的图的k个簇。
克鲁斯卡尔时间复杂度最坏情况是O(eloge)这是因为我们需要对边排序。 Prim时间复杂度最坏的情况是O(E log V)优先队列,甚至更好的情况是O(E+V log V)斐波那契堆。 我们应该使用Kruskal当图是稀疏的,即少量的边,如E=O(V),当边已经排序或如果我们可以在线性时间内排序。 当图是密集的,即边的数量很高时,我们应该使用Prim,如E=O(V²)。
如果我们中途停止算法,prim的算法总是生成连接的树,而kruskal的算法可以给出连接的树或森林
如果边可以在线性时间内排序,或者已经排序,Kruskal可以有更好的性能。
如果顶点的边数较多,则Prim更好。