我需要合并多个字典,这是我有例如:

dict1 = {1:{"a":{A}}, 2:{"b":{B}}}

dict2 = {2:{"c":{C}}, 3:{"d":{D}}}

A、B、C和D是树的叶子,比如{"info1":"value", "info2":"value2"}

字典的级别(深度)未知,可能是{2:{"c":{"z":{"y":{c}}}}}

在我的例子中,它表示一个目录/文件结构,节点是文档,叶子是文件。

我想将它们合并得到:

 dict3 = {1:{"a":{A}}, 2:{"b":{B},"c":{C}}, 3:{"d":{D}}}

我不确定如何用Python轻松做到这一点。


当前回答

我一直在测试你的解决方案,并决定在我的项目中使用这个:

def mergedicts(dict1, dict2, conflict, no_conflict):
    for k in set(dict1.keys()).union(dict2.keys()):
        if k in dict1 and k in dict2:
            yield (k, conflict(dict1[k], dict2[k]))
        elif k in dict1:
            yield (k, no_conflict(dict1[k]))
        else:
            yield (k, no_conflict(dict2[k]))

dict1 = {1:{"a":"A"}, 2:{"b":"B"}}
dict2 = {2:{"c":"C"}, 3:{"d":"D"}}

#this helper function allows for recursion and the use of reduce
def f2(x, y):
    return dict(mergedicts(x, y, f2, lambda x: x))

print dict(mergedicts(dict1, dict2, f2, lambda x: x))
print dict(reduce(f2, [dict1, dict2]))

将函数作为参数传递是将jterrace解决方案扩展为所有其他递归解决方案的关键。

其他回答

还有一个轻微的变化:

下面是一个纯粹的基于python3集的深度更新函数。它通过一次循环遍历一层来更新嵌套字典,并调用自己来更新下一层的字典值:

def deep_update(dict_original, dict_update):
    if isinstance(dict_original, dict) and isinstance(dict_update, dict):
        output=dict(dict_original)
        keys_original=set(dict_original.keys())
        keys_update=set(dict_update.keys())
        similar_keys=keys_original.intersection(keys_update)
        similar_dict={key:deep_update(dict_original[key], dict_update[key]) for key in similar_keys}
        new_keys=keys_update.difference(keys_original)
        new_dict={key:dict_update[key] for key in new_keys}
        output.update(similar_dict)
        output.update(new_dict)
        return output
    else:
        return dict_update

举个简单的例子:

x={'a':{'b':{'c':1, 'd':1}}}
y={'a':{'b':{'d':2, 'e':2}}, 'f':2}

print(deep_update(x, y))
>>> {'a': {'b': {'c': 1, 'd': 2, 'e': 2}}, 'f': 2}

在不影响输入字典的情况下返回一个合并。

def _merge_dicts(dictA: Dict = {}, dictB: Dict = {}) -> Dict:
    # it suffices to pass as an argument a clone of `dictA`
    return _merge_dicts_aux(dictA, dictB, copy(dictA))


def _merge_dicts_aux(dictA: Dict = {}, dictB: Dict = {}, result: Dict = {}, path: List[str] = None) -> Dict:

    # conflict path, None if none
    if path is None:
        path = []

    for key in dictB:

        # if the key doesn't exist in A, add the B element to A
        if key not in dictA:
            result[key] = dictB[key]

        else:
            # if the key value is a dict, both in A and in B, merge the dicts
            if isinstance(dictA[key], dict) and isinstance(dictB[key], dict):
                _merge_dicts_aux(dictA[key], dictB[key], result[key], path + [str(key)])

            # if the key value is the same in A and in B, ignore
            elif dictA[key] == dictB[key]:
                pass

            # if the key value differs in A and in B, raise error
            else:
                err: str = f"Conflict at {'.'.join(path + [str(key)])}"
                raise Exception(err)

    return result

灵感来自@andrew cooke的解决方案

这应该有助于将所有项从dict2合并到dict1:

for item in dict2:
    if item in dict1:
        for leaf in dict2[item]:
            dict1[item][leaf] = dict2[item][leaf]
    else:
        dict1[item] = dict2[item]

请测试一下,告诉我们这是否是你想要的。

编辑:

上述解决方案只合并了一个级别,但正确地解决了op给出的例子。如果合并多个级别,应该使用递归。

以下是来自@andrew cooke的回答。 它以更好的方式处理嵌套列表。

def deep_merge_lists(original, incoming):
    """
    Deep merge two lists. Modifies original.
    Recursively call deep merge on each correlated element of list. 
    If item type in both elements are
     a. dict: Call deep_merge_dicts on both values.
     b. list: Recursively call deep_merge_lists on both values.
     c. any other type: Value is overridden.
     d. conflicting types: Value is overridden.

    If length of incoming list is more that of original then extra values are appended.
    """
    common_length = min(len(original), len(incoming))
    for idx in range(common_length):
        if isinstance(original[idx], dict) and isinstance(incoming[idx], dict):
            deep_merge_dicts(original[idx], incoming[idx])

        elif isinstance(original[idx], list) and isinstance(incoming[idx], list):
            deep_merge_lists(original[idx], incoming[idx])

        else:
            original[idx] = incoming[idx]

    for idx in range(common_length, len(incoming)):
        original.append(incoming[idx])


def deep_merge_dicts(original, incoming):
    """
    Deep merge two dictionaries. Modifies original.
    For key conflicts if both values are:
     a. dict: Recursively call deep_merge_dicts on both values.
     b. list: Call deep_merge_lists on both values.
     c. any other type: Value is overridden.
     d. conflicting types: Value is overridden.

    """
    for key in incoming:
        if key in original:
            if isinstance(original[key], dict) and isinstance(incoming[key], dict):
                deep_merge_dicts(original[key], incoming[key])

            elif isinstance(original[key], list) and isinstance(incoming[key], list):
                deep_merge_lists(original[key], incoming[key])

            else:
                original[key] = incoming[key]
        else:
            original[key] = incoming[key]

这实际上是相当棘手的-特别是如果你想要一个有用的错误消息时,事情是不一致的,同时正确地接受重复但一致的条目(这是这里没有其他答案做的..)。

假设你没有大量的条目,递归函数是最简单的:

from functools import reduce

def merge(a, b, path=None):
    "merges b into a"
    if path is None: path = []
    for key in b:
        if key in a:
            if isinstance(a[key], dict) and isinstance(b[key], dict):
                merge(a[key], b[key], path + [str(key)])
            elif a[key] == b[key]:
                pass # same leaf value
            else:
                raise Exception('Conflict at %s' % '.'.join(path + [str(key)]))
        else:
            a[key] = b[key]
    return a

# works
print(merge({1:{"a":"A"},2:{"b":"B"}}, {2:{"c":"C"},3:{"d":"D"}}))
# has conflict
merge({1:{"a":"A"},2:{"b":"B"}}, {1:{"a":"A"},2:{"b":"C"}})

注意,这会使a发生变化——b的内容被添加到a(也会返回a)。如果你想保留a,你可以叫它merge(dict(a) b)

Agf指出(下面),你可能有两个以上的字典,在这种情况下,你可以使用:

reduce(merge, [dict1, dict2, dict3...])

所有内容都将被添加到dict1中。

注意:我编辑了我的初始答案以改变第一个参数;这使得“reduce”更容易解释