这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)
其他回答
如果你只想得到很少的斐波那契数,你可以使用矩阵法。
from numpy import matrix
def fib(n):
return (matrix('0 1; 1 1', dtype='object') ** n).item(1)
它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。
我知道这是一个老问题,但对于那些阅读的人来说,我建议不要使用递归来解决这样的问题——列表要快得多,并且完全避免递归。我将这样实现:
def fibonacci(n):
f = [0,1,1]
for i in xrange(3,n):
f.append(f[i-1] + f[i-2])
return 'The %.0fth fibonacci number is: %.0f' % (n,f[-1])
(在xrange中使用n+1,如果你从0开始计数你的斐波那契数列,而不是从1开始。)
RecursionError:在比较中超出的最大递归深度
解决方案:
首先,最好知道当你在一个大输入(> 10^4)上用Python执行递归函数时,你可能会遇到“最大递归深度超出错误”。
Python中的sys模块有一个函数getrecursionlimit()可以显示Python版本中的递归限制。
import sys
print("Python Recursive Limitation = ", sys.getrecursionlimit())
在某些版本的Python中,默认值是1000,而在另一些版本中则是1500
你可以改变这个限制,但重要的是要知道,如果你增加太多,就会出现内存溢出错误。
所以在增加它之前要小心。你可以使用setrecursionlimit()在Python中增加这个限制。
import sys
sys.setrecursionlimit(3000)
请点击此链接了解导致此问题的更多信息:
https://elvand.com/quick-sort-binary-search/
正如@alex所建议的,您可以使用生成器函数按顺序而不是递归地完成此操作。
这里是你问题中的等效代码:
def fib(n):
def fibseq(n):
""" Iteratively return the first n Fibonacci numbers, starting from 0. """
a, b = 0, 1
for _ in xrange(n):
yield a
a, b = b, a + b
return sum(v for v in fibseq(n))
print format(fib(100000), ',d') # -> no recursion depth error
使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。