我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

这是最简单和最简洁的方法,尽管我不知道它在CPU周期方面的比较。如果您只想知道根是否是整数,那么这非常有用。如果你真的关心它是不是整数,你也可以弄清楚。这里有一个简单(纯)函数:

private static final MathContext precision = new MathContext(20);

private static final Function<Long, Boolean> isRootWhole = (n) -> {
    long digit = n % 10;
    if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
        return false;
    }
    return new BigDecimal(n).sqrt(precision).scale() == 0;
};

如果您不需要微优化,那么这个答案在简单性和可维护性方面更好。如果要计算负数,则需要相应地处理,并将绝对值发送到函数中。我包含了一个小的优化,因为由于二次残差mod 10,没有完美的正方形具有2、3、7或8的十位数。

在我的CPU上,在0-10000000上运行此算法平均每次计算需要1000-1100纳秒。

如果执行的计算次数较少,则早期的计算需要更长的时间。

我有一个负面评论,说我以前的编辑不适用于大量数据。OP提到了Longs,Long的最大完美正方形是9223372030926249001,因此该方法适用于所有Longs。

其他回答

static boolean isPerfectSquare (int input) {
  return Math.sqrt(input) == (int) Math.sqrt(input);
}

如果输入的平方根的整数值等于双倍值,则返回该值。这意味着它是一个整数,它将返回true。否则,将返回false。

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。

那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。

在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。

typedef unsigned long long UVLONG
UVLONG pp1,pp2;

void init2() {
  for (int i = 0; i < 64; i++) {
    for (int j = 0; j < 64; j++)
      if (isPerfectSquare(i * 64 + j)) {
    pp1 |= (1 << j);
    pp2 |= (1 << i);
    break;
      }
   }
   cout << "pp1=" << pp1 << "," << pp2 << "\n";  
}


inline bool isPerfectSquare5(UVLONG x) {
  return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}

在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。

当然,你可以用同样的方法检查高6位,而不是单独测试阴性。

请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。

init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。

没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。

有人指出,完美正方形的最后d位只能取某些值。数字n的最后d位(以b为基数)与n除以bd时的余数相同,即C符号n%pow(b,d)。

这可以推广到任何模数m,即n%m可以用来排除某些百分比的数字是完全平方。您当前使用的模数是64,这允许12,即19%的余数作为可能的平方。通过一点编码,我找到了模数110880,它只允许2016,即1.8%的余数作为可能的平方。因此,根据模数运算(即除法)和查找表与机器上的平方根的成本,使用这个模数可能会更快。

顺便说一句,如果Java有办法为查找表存储一个压缩的位数组,那么不要使用它。现在110880个32位字的RAM不多,提取一个机器字将比提取一个位更快。

你必须做一些基准测试。最佳算法将取决于输入的分布。

您的算法可能接近最佳,但在调用平方根例程之前,您可能需要快速检查以排除某些可能性。例如,通过按位“和”查看十六进制数字的最后一位。完美的正方形只能以0、1、4或9结尾,以16为底。因此,对于75%的输入(假设它们是均匀分布的),可以避免调用平方根,以换取一些非常快的位旋转。

Kip对实现十六进制技巧的以下代码进行了基准测试。当测试数字1到100000000时,此代码的运行速度是原始代码的两倍。

public final static boolean isPerfectSquare(long n)
{
    if (n < 0)
        return false;

    switch((int)(n & 0xF))
    {
    case 0: case 1: case 4: case 9:
        long tst = (long)Math.sqrt(n);
        return tst*tst == n;

    default:
        return false;
    }
}

当我在C++中测试类似的代码时,它实际上比原始代码运行得慢。然而,当我消除switch语句时,十六进制技巧再次使代码速度提高了一倍。

int isPerfectSquare(int n)
{
    int h = n & 0xF;  // h is the last hex "digit"
    if (h > 9)
        return 0;
    // Use lazy evaluation to jump out of the if statement as soon as possible
    if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
    {
        int t = (int) floor( sqrt((double) n) + 0.5 );
        return t*t == n;
    }
    return 0;
}

消除switch语句对C#代码几乎没有影响。