我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

我同意Dan H的观点,Ben确实要求所有的组合。itertools.combination()不会给出所有的组合。

另一个问题是,如果输入iterable很大,返回一个生成器而不是列表中的所有内容可能会更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

其他回答

我在这个话题上有点晚了,但我想我可以帮助别人。

你可以使用itertools中的product:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=3) # You can change the repeat more then n length

print(list(result))

输出:

[(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),
 (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2),
 (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), 
(3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

另一个例子,但是改变了repeat参数:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=4) # Changing repeat to 4
print(list(result))

输出:

(1, 1, 2, 3), (1, 1, 3, 1), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 1, 1), 
(1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3), 
(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 3, 1, 1), (1, 3, 1, 2), 
(1, 3, 1, 3), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 3, 1), 
(1, 3, 3, 2), (1, 3, 3, 3), (2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 1, 3), 
(2, 1, 2, 1), (2, 1, 2, 2), (2, 1, 2, 3), (2, 1, 3, 1), (2, 1, 3, 2),
 (2, 1, 3, 3), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 1), 
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 1), (2, 2, 3, 2), (2, 2, 3, 3), 
(2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 1), (2, 3, 2, 2), 
(2, 3, 2, 3), (2, 3, 3, 1), (2, 3, 3, 2), (2, 3, 3, 3), (3, 1, 1, 1), 
(3, 1, 1, 2), (3, 1, 1, 3), (3, 1, 2, 1), (3, 1, 2, 2), (3, 1, 2, 3), 
(3, 1, 3, 1), (3, 1, 3, 2), (3, 1, 3, 3), (3, 2, 1, 1), (3, 2, 1, 2), 
(3, 2, 1, 3), (3, 2, 2, 1), (3, 2, 2, 2), (3, 2, 2, 3), (3, 2, 3, 1), 
(3, 2, 3, 2), (3, 2, 3, 3), (3, 3, 1, 1), (3, 3, 1, 2), (3, 3, 1, 3), 
(3, 3, 2, 1), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 3, 1), (3, 3, 3, 2), 
(3, 3, 3, 3)]```

正如James Brady提到的,你的itertools.combination是一个键。但这并不是一个完整的解决方案。

解决方案1

import itertools
def all(lst):
    # ci is a bitmask which denotes particular combination,
    # see explanation below
    for ci in range(1, 2**len(lst)):
        yield tuple(itertools.compress(
            lst,
            [ci & (1<<k) for k in  range(0, len(lst))]
        ))

解决方案2

import itertools
def all_combs(lst):
    for r in range(1, len(lst)+1):
        for comb in itertools.combinations(lst, r):
            yield comb

例子

>>> list(all_combs([1,2,3]))
[(1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all_combs([1,2,3])))
7
>>> len(list(all_combs(range(0, 15))))
32767
>>> list(all([1,2,3]))
[(1,), (2,), (1, 2), (3,), (1, 3), (2, 3), (1, 2, 3)]
>>> len(list(all(range(15))))
32767

解释

假设数组A的长度为N,让长度为N的位掩码B表示一个特定的组合C。如果B[i]是1,那么A[i]属于组合C。

方案1说明

所以我们可以遍历所有的位掩码并用这个位掩码过滤源数组A,这可以通过itertools。compress来完成。

方案2说明

...或者,我们可以用组合来表示

现在我们需要考虑这样的情况,当B中只有一个1,然后只有两个1,等等。每种情况都属于特定的组合。 因此,一旦我们组合所有的组合集,我们将得到所有的子序列。

同样,很明显,在这种情况下,所有可能的组合的数量是2^N - 1。当所有B[i]都为零时,我们省略大小写,因为我们假设空集不是一个组合。否则,就不要减去1。

看看itertools.combination:

itertools.combinations (iterable, r) 返回元素的r长度子序列 输入迭代对象。 组合是按字典排序顺序发出的。那么,如果 Input iterable已排序,则 组合元组将在 排序顺序。

从2.6开始,电池包括在内!

这一行代码给出了所有的组合(如果原始列表/set包含n个不同的元素,则在0到n个元素之间),并使用本机方法itertools.combination:

Python 2

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])

Python 3

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])

输出将是:

[[],
 ['a'],
 ['b'],
 ['c'],
 ['d'],
 ['a', 'b'],
 ['a', 'c'],
 ['a', 'd'],
 ['b', 'c'],
 ['b', 'd'],
 ['c', 'd'],
 ['a', 'b', 'c'],
 ['a', 'b', 'd'],
 ['a', 'c', 'd'],
 ['b', 'c', 'd'],
 ['a', 'b', 'c', 'd']]

在网上试试吧:

http://ideone.com/COghfX

下面是一个“标准递归答案”,类似于其他类似的答案https://stackoverflow.com/a/23743696/711085。(实际上,我们不必担心耗尽堆栈空间,因为我们没有办法处理所有N!排列)。

它依次访问每个元素,要么取它,要么离开它(从这个算法中我们可以直接看到2^N的基数)。

def combs(xs, i=0):
    if i==len(xs):
        yield ()
        return
    for c in combs(xs,i+1):
        yield c
        yield c+(xs[i],)

演示:

>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]

>>> list(sorted( combs(range(5)), key=len))
[(), 
 (0,), (1,), (2,), (3,), (4,), 
 (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), 
 (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2), 
 (3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1), 
 (4, 3, 2, 1, 0)]

>>> len(set(combs(range(5))))
32