我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。
我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。
我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。
有人知道更好的办法吗?使用map(),也许?
当前回答
下面是itertools.combination的两个实现
返回一个列表的函数
def combinations(lst, depth, start=0, items=[]):
if depth <= 0:
return [items]
out = []
for i in range(start, len(lst)):
out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
return out
一个返回一个生成器
def combinations(lst, depth, start=0, prepend=[]):
if depth <= 0:
yield prepend
else:
for i in range(start, len(lst)):
for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
yield c
请注意,建议为它们提供一个helper函数,因为prepend参数是静态的,不会随着每次调用而改变
print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)
print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]
这是一个很肤浅的例子,但小心为妙
其他回答
看看itertools.combination:
itertools.combinations (iterable, r) 返回元素的r长度子序列 输入迭代对象。 组合是按字典排序顺序发出的。那么,如果 Input iterable已排序,则 组合元组将在 排序顺序。
从2.6开始,电池包括在内!
这段代码采用了一个简单的嵌套列表算法…
# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
# [ [ [] ] ]
# [ [ [] ], [ [A] ] ]
# [ [ [] ], [ [A],[B] ], [ [A,B] ] ]
# [ [ [] ], [ [A],[B],[C] ], [ [A,B],[A,C],[B,C] ], [ [A,B,C] ] ]
# [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
# There is a set of lists for each number of items that will occur in a combo (including an empty set).
# For each additional item, begin at the back of the list by adding an empty list, then taking the set of
# lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
# 3-item lists and append to it additional lists created by appending the item (4) to the lists in the
# next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
# for each set of lists back to the initial list containing just the empty list.
#
def getCombos(listIn = ['A','B','C','D','E','F'] ):
listCombos = [ [ [] ] ] # list of lists of combos, seeded with a list containing only the empty list
listSimple = [] # list to contain the final returned list of items (e.g., characters)
for item in listIn:
listCombos.append([]) # append an emtpy list to the end for each new item added
for index in xrange(len(listCombos)-1, 0, -1): # set the index range to work through the list
for listPrev in listCombos[index-1]: # retrieve the lists from the previous column
listCur = listPrev[:] # create a new temporary list object to update
listCur.append(item) # add the item to the previous list to make it current
listCombos[index].append(listCur) # list length and append it to the current list
itemCombo = '' # Create a str to concatenate list items into a str
for item in listCur: # concatenate the members of the lists to create
itemCombo += item # create a string of items
listSimple.append(itemCombo) # add to the final output list
return [listSimple, listCombos]
# END getCombos()
flag = 0
requiredCals =12
from itertools import chain, combinations
def powerset(iterable):
s = list(iterable) # allows duplicate elements
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
if(len(combo)>0):
#print(combo , sum(combo))
if(sum(combo)== requiredCals):
flag = 1
break
if(flag==1):
print('True')
else:
print('else')
如果你不想使用组合库,这里是解决方案:
nums = [1,2,3]
p = [[]]
fnl = [[],nums]
for i in range(len(nums)):
for j in range(i+1,len(nums)):
p[-1].append([i,j])
for i in range(len(nums)-3):
p.append([])
for m in p[-2]:
p[-1].append(m+[m[-1]+1])
for i in p:
for j in i:
n = []
for m in j:
if m < len(nums):
n.append(nums[m])
if n not in fnl:
fnl.append(n)
for i in nums:
if [i] not in fnl:
fnl.append([i])
print(fnl)
输出:
[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]
我想我应该为那些寻求答案的人添加这个函数,而不需要导入itertools或任何其他额外的库。
def powerSet(items):
"""
Power set generator: get all possible combinations of a list’s elements
Input:
items is a list
Output:
returns 2**n combination lists one at a time using a generator
Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
"""
N = len(items)
# enumerate the 2**N possible combinations
for i in range(2**N):
combo = []
for j in range(N):
# test bit jth of integer i
if (i >> j) % 2 == 1:
combo.append(items[j])
yield combo
简单Yield Generator用法:
for i in powerSet([1,2,3,4]):
print (i, ", ", end="")
以上用法示例的输出:
[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3], [4]. [1, 4], [2, 4], [1, 2, 4], [3, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4],