我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!
例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。
谁能解释一下过程吗?
编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。
我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!
例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。
谁能解释一下过程吗?
编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。
当前回答
到目前为止,所有的答案都很好,并且从不同的方面了解了哈希表的工作方式。这里有一个简单的例子,可能会有帮助。假设我们想要存储一些带有小写字母字符串的项作为键。
正如simon所解释的,哈希函数用于从大空间映射到小空间。对于我们的例子,一个简单的哈希函数实现可以取字符串的第一个字母,并将其映射为一个整数,因此“短吻鳄”的哈希代码为0,“蜜蜂”的哈希代码为1,“斑马”的哈希代码为25,等等。
接下来,我们有一个包含26个存储桶的数组(在Java中可以是数组列表),我们将项放入与键的哈希码匹配的存储桶中。如果我们有不止一个元素键以相同字母开头,它们就会有相同的哈希码,所以它们都会进入存储桶中寻找那个哈希码所以必须在存储桶中进行线性搜索才能找到一个特定的元素。
在我们的例子中,如果我们只有几十个项目,键横跨字母表,它会工作得很好。然而,如果我们有一百万个条目,或者所有的键都以'a'或'b'开头,那么我们的哈希表就不是理想的。为了获得更好的性能,我们需要一个不同的哈希函数和/或更多的桶。
其他回答
到目前为止,所有的答案都很好,并且从不同的方面了解了哈希表的工作方式。这里有一个简单的例子,可能会有帮助。假设我们想要存储一些带有小写字母字符串的项作为键。
正如simon所解释的,哈希函数用于从大空间映射到小空间。对于我们的例子,一个简单的哈希函数实现可以取字符串的第一个字母,并将其映射为一个整数,因此“短吻鳄”的哈希代码为0,“蜜蜂”的哈希代码为1,“斑马”的哈希代码为25,等等。
接下来,我们有一个包含26个存储桶的数组(在Java中可以是数组列表),我们将项放入与键的哈希码匹配的存储桶中。如果我们有不止一个元素键以相同字母开头,它们就会有相同的哈希码,所以它们都会进入存储桶中寻找那个哈希码所以必须在存储桶中进行线性搜索才能找到一个特定的元素。
在我们的例子中,如果我们只有几十个项目,键横跨字母表,它会工作得很好。然而,如果我们有一百万个条目,或者所有的键都以'a'或'b'开头,那么我们的哈希表就不是理想的。为了获得更好的性能,我们需要一个不同的哈希函数和/或更多的桶。
Hashtable inside contains cans in which it stores the key sets. The Hashtable uses the hashcode to decide to which the key pair should plan. The capacity to get the container area from Key's hashcode is known as hash work. In principle, a hash work is a capacity which when given a key, creates an address in the table. A hash work consistently returns a number for an item. Two equivalent items will consistently have a similar number while two inconsistent objects may not generally have various numbers. When we put objects into a hashtable then it is conceivable that various objects may have equal/ same hashcode. This is known as a collision. To determine collision, hashtable utilizes a variety of lists. The sets mapped to a single array index are stored in a list and then the list reference is stored in the index.
简短而甜蜜:
哈希表封装了一个数组,我们称之为internalArray。将项以如下方式插入数组:
let insert key value =
internalArray[hash(key) % internalArray.Length] <- (key, value)
//oversimplified for educational purposes
有时两个键会散列到数组中的同一个索引,而您希望保留这两个值。我喜欢把两个值都存储在同一个索引中,通过将internalArray作为一个链表数组来编码很简单:
let insert key value =
internalArray[hash(key) % internalArray.Length].AddLast(key, value)
所以,如果我想从哈希表中检索一个项,我可以这样写:
let get key =
let linkedList = internalArray[hash(key) % internalArray.Length]
for (testKey, value) in linkedList
if (testKey = key) then return value
return null
删除操作写起来也很简单。正如你所知道的,从我们的链表数组中插入、查找和删除几乎是O(1)。
当我们的internalArray太满时,可能在85%左右的容量,我们可以调整内部数组的大小,并将所有项目从旧数组移动到新数组中。
直连地址表
要理解哈希表,直接地址表是我们应该理解的第一个概念。
直接地址表直接使用键作为数组中槽的索引。宇宙键的大小等于数组的大小。在O(1)时间内访问这个键非常快,因为数组支持随机访问操作。
然而,在实现直接地址表之前,有四个注意事项:
要成为有效的数组索引,键应该是整数 键的范围是相当小的,否则,我们将需要一个巨大的数组。 不能将两个不同的键映射到数组中的同一个槽 宇宙键的长度等于数组的长度
事实上,现实生活中并不是很多情况都符合上述要求,所以哈希表就可以救场了
哈希表
哈希表不是直接使用键,而是首先应用数学哈希函数将任意键数据一致地转换为数字,然后使用该哈希结果作为键。
宇宙键的长度可以大于数组的长度,这意味着两个不同的键可以散列到相同的索引(称为散列碰撞)?
实际上,有一些不同的策略来处理它。这里有一个常见的解决方案:我们不将实际值存储在数组中,而是存储一个指向链表的指针,该链表包含散列到该索引的所有键的值。
如果你仍然有兴趣知道如何从头开始实现hashmap,请阅读下面的帖子
你们已经很接近完整地解释了这个问题,但是遗漏了一些东西。哈希表只是一个数组。数组本身将在每个槽中包含一些内容。至少要将哈希值或值本身存储在这个插槽中。除此之外,您还可以存储在此插槽上碰撞的值的链接/链表,或者您可以使用开放寻址方法。您还可以存储一个或多个指针,这些指针指向您希望从该槽中检索的其他数据。
It's important to note that the hashvalue itself generally does not indicate the slot into which to place the value. For example, a hashvalue might be a negative integer value. Obviously a negative number cannot point to an array location. Additionally, hash values will tend to many times be larger numbers than the slots available. Thus another calculation needs to be performed by the hashtable itself to figure out which slot the value should go into. This is done with a modulus math operation like:
uint slotIndex = hashValue % hashTableSize;
这个值是该值将要进入的槽。在开放寻址中,如果槽位已经被另一个哈希值和/或其他数据填充,将再次运行模运算来查找下一个槽:
slotIndex = (remainder + 1) % hashTableSize;
我想可能还有其他更高级的方法来确定槽索引,但这是我见过的最常见的方法……会对其他表现更好的公司感兴趣。
With the modulus method, if you have a table of say size 1000, any hashvalue that is between 1 and 1000 will go into the corresponding slot. Any Negative values, and any values greater than 1000 will be potentially colliding slot values. The chances of that happening depend both on your hashing method, as well as how many total items you add to the hash table. Generally, it's best practice to make the size of the hashtable such that the total number of values added to it is only equal to about 70% of its size. If your hash function does a good job of even distribution, you will generally encounter very few to no bucket/slot collisions and it will perform very quickly for both lookup and write operations. If the total number of values to add is not known in advance, make a good guesstimate using whatever means, and then resize your hashtable once the number of elements added to it reaches 70% of capacity.
我希望这对你有所帮助。
PS - In C# the GetHashCode() method is pretty slow and results in actual value collisions under a lot of conditions I've tested. For some real fun, build your own hashfunction and try to get it to NEVER collide on the specific data you are hashing, run faster than GetHashCode, and have a fairly even distribution. I've done this using long instead of int size hashcode values and it's worked quite well on up to 32 million entires hashvalues in the hashtable with 0 collisions. Unfortunately I can't share the code as it belongs to my employer... but I can reveal it is possible for certain data domains. When you can achieve this, the hashtable is VERY fast. :)