要删除DataFrame中的列,我可以成功使用:

del df['column_name']

但为什么我不能使用以下选项?

del df.column_name

由于可以通过df.column_name访问该系列,所以我希望这能奏效。


当前回答

点语法在JavaScript中有效,但在Python中无效。

Python:del df['column_name]JavaScript:del df['column_name]或del df.column_name

其他回答

Use:

df.drop('columnname', axis =1, inplace = True)

或者你可以和

del df['colname']

基于列编号删除多个列的步骤

df.drop(df.iloc[:,1:3], axis = 1, inplace = True)

基于列名删除多个列的步骤

df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)

Pandas 0.21+答案

Pandas 0.21版略微更改了drop方法,以包括索引和列参数,以匹配重命名和重新索引方法的签名。

df.drop(columns=['column_a', 'column_c'])

就我个人而言,我更喜欢使用axis参数来表示列或索引,因为它是几乎所有panda方法中使用的主要关键字参数。但是,现在您在0.21版中增加了一些选择。

一个很好的补充是,只有列存在时才可以删除它们。这样,您可以覆盖更多的用例,并且它只会从传递给它的标签中删除现有列:

例如,只需添加errors='ignore':

df.drop(['col_name_1', 'col_name_2', ..., 'col_name_N'], inplace=True, axis=1, errors='ignore')

这是熊猫0.16.1以后的新版本。文档在这里。

在Pandas 0.16.1+中,只有当列按照eiTan LaVi发布的解决方案存在时,才能删除它们。在此版本之前,您可以通过条件列表理解获得相同的结果:

df.drop([col for col in ['col_name_1','col_name_2',...,'col_name_N'] if col in df],
        axis=1, inplace=True)

我们可以通过drop()方法删除或删除一个或多个指定列。

假设df是一个数据帧。

要删除的列=列0

代码:

df = df.drop(column0, axis=1)

要删除多个列col1、col2、,coln,我们必须在列表中插入所有需要删除的列。然后通过drop()方法删除它们。

代码:

df = df.drop([col1, col2, . . . , coln], axis=1)