Is there a performance or code maintenance issue with using assert as part of the standard code instead of using it just for debugging purposes? Is assert x >= 0, 'x is less than zero' better or worse than if x < 0: raise Exception('x is less than zero') Also, is there any way to set a business rule like if x < 0 raise error that is always checked without the try/except/finally so, if at anytime throughout the code x is less than 0 an error is raised, like if you set assert x < 0 at the start of a function, anywhere within the function where x becomes less then 0 an exception is raised?
当前回答
无论如何,如果你处理的代码依赖assert来正常工作,那么添加以下代码将确保assert被启用:
try:
assert False
raise Exception('Python assertions are not working. This tool relies on Python assertions to do its job. Possible causes are running with the "-O" flag or running a precompiled (".pyo" or ".pyc") module.')
except AssertionError:
pass
其他回答
当x在整个函数中小于零时,能够自动抛出错误。您可以使用类描述符。这里有一个例子:
class LessThanZeroException(Exception):
pass
class variable(object):
def __init__(self, value=0):
self.__x = value
def __set__(self, obj, value):
if value < 0:
raise LessThanZeroException('x is less than zero')
self.__x = value
def __get__(self, obj, objType):
return self.__x
class MyClass(object):
x = variable()
>>> m = MyClass()
>>> m.x = 10
>>> m.x -= 20
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "my.py", line 7, in __set__
raise LessThanZeroException('x is less than zero')
LessThanZeroException: x is less than zero
这种方法唯一真正的错误是,很难使用断言语句产生非常描述性的异常。如果你正在寻找更简单的语法,记住你也可以这样做:
class XLessThanZeroException(Exception):
pass
def CheckX(x):
if x < 0:
raise XLessThanZeroException()
def foo(x):
CheckX(x)
#do stuff here
另一个问题是,使用assert进行正常的条件检查会使使用-O标志禁用调试断言变得困难。
断言应该用于测试不应该发生的情况。目的是在程序状态损坏的情况下尽早崩溃。
异常应该用于可能发生的错误,并且几乎总是应该创建自己的Exception类。
例如,如果您正在编写一个从配置文件读取到dict的函数,那么文件中的不当格式将引发ConfigurationSyntaxError,而您可以断言您不会返回None。
在您的示例中,如果x是通过用户界面或外部源设置的值,则最好使用异常。
如果x只是在同一个程序中由您自己的代码设置的,则使用断言。
assert的使用和异常的引发都与通信有关。
Assertions are statements about the correctness of code addressed at developers: An assertion in the code informs readers of the code about conditions that have to be fulfilled for the code being correct. An assertion that fails at run-time informs developers that there is a defect in the code that needs fixing. Exceptions are indications about non-typical situations that can occur at run-time but can not be resolved by the code at hand, addressed at the calling code to be handled there. The occurence of an exception does not indicate that there is a bug in the code.
最佳实践
因此,如果您将运行时发生的特定情况视为您想要通知开发人员的错误(“嗨,开发人员,这种情况表明某处存在错误,请修复代码。”),那么请使用断言。如果断言检查代码的输入参数,当输入参数违反条件时,您通常应该在文档中添加代码具有“未定义行为”。
相反,如果这种情况的出现并不是您眼中的错误,而是您认为应该由客户端代码处理的(可能很少,但可能)情况,则引发异常。引发哪种异常的情况应该是相应代码文档的一部分。
有没有演出[…]使用assert时的问题
断言的计算需要一些时间。但是,它们可以在编译时被删除。然而,这有一些后果,见下文。
有[…]使用assert的代码维护问题
Normally assertions improve the maintainability of the code, since they improve readability by making assumptions explicit and during run-time regularly verifying these assumptions. This will also help catching regressions. There is one issue, however, that needs to be kept in mind: Expressions used in assertions should have no side-effects. As mentioned above, assertions can be eliminated at compile time - which means that also the potential side-effects would disappear. This can - unintendedly - change the behaviour of the code.
无论如何,如果你处理的代码依赖assert来正常工作,那么添加以下代码将确保assert被启用:
try:
assert False
raise Exception('Python assertions are not working. This tool relies on Python assertions to do its job. Possible causes are running with the "-O" flag or running a precompiled (".pyo" or ".pyc") module.')
except AssertionError:
pass
推荐文章
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件
- 在Python中,使用argparse只允许正整数
- 如何排序mongodb与pymongo
- 不可变与可变类型
- 列表是线程安全的吗?
- 操作系统。makdirs在我的路径上不理解“~”
- 如何在Django模板中获得我的网站的域名?
- 在django Forms中定义css类
- 如何在Python中scp ?
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?