是否有可能在JavaScript中播种随机数生成器(Math.random) ?


当前回答

不,就像他们说的,不可能播种Math.random() 但你可以安装外部包,为这做准备。我使用这些包,可以安装使用这些命令

npm i random-seed

该示例来自包文档。

var seed = 'Hello World',
rand1 = require('random-seed').create(seed),
rand2 = require('random-seed').create(seed);
console.log(rand1(100), rand2(100));

点击链接获取文档https://www.npmjs.com/package/random-seed

其他回答

没有,但这里有一个简单的伪随机生成器,一个我从维基百科改编的Multiply-with-carry的实现(已经被删除了):

var m_w = 123456789;
var m_z = 987654321;
var mask = 0xffffffff;

// Takes any integer
function seed(i) {
    m_w = (123456789 + i) & mask;
    m_z = (987654321 - i) & mask;
}

// Returns number between 0 (inclusive) and 1.0 (exclusive),
// just like Math.random().
function random()
{
    m_z = (36969 * (m_z & 65535) + (m_z >> 16)) & mask;
    m_w = (18000 * (m_w & 65535) + (m_w >> 16)) & mask;
    var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
    result /= 4294967296;
    return result;
}

Antti Sykäri的算法很好,很短。我最初做了一个变种来取代JavaScript的Math。当你调用Math.seed(s)时是随机的,但随后Jason评论说返回函数会更好:

Math.seed = function(s) {
    return function() {
        s = Math.sin(s) * 10000; return s - Math.floor(s);
    };
};

// usage:
var random1 = Math.seed(42);
var random2 = Math.seed(random1());
Math.random = Math.seed(random2());

这为您提供了JavaScript没有的另一个功能:多个独立的随机生成器。如果您希望同时运行多个可重复的模拟,这一点尤其重要。

结合之前的一些答案,这是你正在寻找的可种子随机函数:

Math.seed = function(s) {
    var mask = 0xffffffff;
    var m_w  = (123456789 + s) & mask;
    var m_z  = (987654321 - s) & mask;

    return function() {
      m_z = (36969 * (m_z & 65535) + (m_z >>> 16)) & mask;
      m_w = (18000 * (m_w & 65535) + (m_w >>> 16)) & mask;

      var result = ((m_z << 16) + (m_w & 65535)) >>> 0;
      result /= 4294967296;
      return result;
    }
}

var myRandomFunction = Math.seed(1234);
var randomNumber = myRandomFunction();

不可能在Math中植入种子。随机函数,但是用Javascript实现一个高质量的RNG是可能的,只需很少的代码。

Javascript数字是64位浮点精度,可以表示小于2^53的所有正整数。这给我们的算法带来了一个硬限制,但在这些限制内,您仍然可以为高质量的Lehmer / LCG随机数生成器选择参数。

function RNG(seed) {
    var m = 2**35 - 31
    var a = 185852
    var s = seed % m
    return function () {
        return (s = s * a % m) / m
    }
}

Math.random = RNG(Date.now())

如果你想要更高质量的随机数,代价是速度慢10倍,你可以使用BigInt进行算术,并选择m刚好适合双精度的参数。

function RNG(seed) {
    var m_as_number = 2**53 - 111
    var m = 2n**53n - 111n
    var a = 5667072534355537n
    var s = BigInt(seed) % m
    return function () {
        return Number(s = s * a % m) / m_as_number
    }
}

参见Pierre l’ecuyer的这篇论文,了解上述实现中使用的参数: https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf

无论你做什么,避免使用Math.sin的所有其他答案!

这是Jenkins哈希的采用版本,从这里借来的

export function createDeterministicRandom(): () => number {
  let seed = 0x2F6E2B1;
  return function() {
    // Robert Jenkins’ 32 bit integer hash function
    seed = ((seed + 0x7ED55D16) + (seed << 12))  & 0xFFFFFFFF;
    seed = ((seed ^ 0xC761C23C) ^ (seed >>> 19)) & 0xFFFFFFFF;
    seed = ((seed + 0x165667B1) + (seed << 5))   & 0xFFFFFFFF;
    seed = ((seed + 0xD3A2646C) ^ (seed << 9))   & 0xFFFFFFFF;
    seed = ((seed + 0xFD7046C5) + (seed << 3))   & 0xFFFFFFFF;
    seed = ((seed ^ 0xB55A4F09) ^ (seed >>> 16)) & 0xFFFFFFFF;
    return (seed & 0xFFFFFFF) / 0x10000000;
  };
}

你可以这样使用它:

const deterministicRandom = createDeterministicRandom()
deterministicRandom()
// => 0.9872818551957607

deterministicRandom()
// => 0.34880331158638