我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

基于希德的好答案。

识别列缺失或未对齐的问题

在连接之前,您可以将CSV文件加载到一个中间字典中,该字典根据文件名(以dict_of_df['filename.csv']的形式)访问每个数据集。这样的字典可以帮助您识别异构数据格式的问题,例如当列名没有对齐时。

导入模块并定位文件路径:

import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

注意:OrderedDict不是必需的,但它将保持文件的顺序,这可能对分析有用。

加载CSV文件到字典中。然后连接:

dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)

键为文件名称f,值为CSV文件的数据帧内容。

除了使用f作为字典键,你还可以使用os.path.basename(f)或其他os.path.basename(f)。方法将字典中键的大小减少到仅相关的较小部分。

其他回答

Dask库可以从多个文件中读取数据帧:

>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')

(来源:https://examples.dask.org/dataframes/01-data-access.html # Read-CSV-files)

Dask数据框架实现了Pandas数据框架API的一个子集。如果所有的数据都适合内存,你可以调用df.compute()将数据帧转换为Pandas数据帧。

简单快捷

导入两个或多个CSV文件,而无需制作名称列表。

import glob
import pandas as pd

df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))

我在谷歌上找到了高拉夫·辛格的答案。

然而,到最近为止,我发现使用NumPy进行任何操作,然后将其分配给一个数据帧,而不是在迭代的基础上操作数据帧本身,这似乎在这个解决方案中也有效。

我真诚地希望访问此页的任何人都能考虑这种方法,但我不想将这段巨大的代码作为注释附加,从而降低其可读性。

您可以利用NumPy来真正加速数据帧连接。

import os
import glob
import pandas as pd
import numpy as np

path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))


np_array_list = []
for file_ in allFiles:
    df = pd.read_csv(file_,index_col=None, header=0)
    np_array_list.append(df.as_matrix())

comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)

big_frame.columns = ["col1", "col2"....]

时间统计:

total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---

考虑使用convtools库,它提供了大量数据处理原语,并在底层生成简单的临时代码。 它不应该比熊猫/极地快,但有时它可以。

例如,你可以连接到一个CSV文件进一步重用-这是代码:

import glob

from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd


def test_pandas():
    df = pd.concat(
        (
            pd.read_csv(filename, index_col=None, header=0)
            for filename in glob.glob("tmp/*.csv")
        ),
        axis=0,
        ignore_index=True,
    )
    df.to_csv("out.csv", index=False)
# took 20.9 s


def test_convtools():
    table = None
    for filename in glob.glob("tmp/*.csv"):
        table_ = Table.from_csv(filename, header=False)
        if table is None:
            table = table_
        else:
            table = table.chain(table_)

    table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s

当然,如果你只是想获得一个数据帧而不写入一个连接文件,它将相应地花费4.63秒和10.9秒(pandas在这里更快,因为它不需要压缩列来写入回)。

另一个带有列表理解的一行程序,允许使用read_csv参数。

df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])