float(nan')表示nan(不是数字)。但我该如何检查呢?


当前回答

这里有三种方法可以测试变量是否为“NaN”。

import pandas as pd
import numpy as np
import math

# For single variable all three libraries return single boolean
x1 = float("nan")

print(f"It's pd.isna: {pd.isna(x1)}")
print(f"It's np.isnan: {np.isnan(x1)}}")
print(f"It's math.isnan: {math.isnan(x1)}}")

输出

It's pd.isna: True
It's np.isnan: True
It's math.isnan: True

其他回答

如何从混合数据类型列表中删除NaN(float)项

如果在可迭代的中有混合类型,这里有一个不使用numpy的解决方案:

from math import isnan

Z = ['a','b', float('NaN'), 'd', float('1.1024')]

[x for x in Z if not (
                      type(x) == float # let's drop all float values…
                      and isnan(x) # … but only if they are nan
                      )]
['a', 'b', 'd', 1.1024]

短路求值意味着不会对非“float”类型的值调用isnan,因为False和(…)很快求值为False,而无需对右侧求值。

当python<2.6时

def isNaN(x):
    return str(float(x)).lower() == 'nan'

这适用于Solaris 5.9机箱上的python 2.5.1和Ubuntu 10上的python 2.6.5

似乎检查它是否等于自身(x!=x)是最快的。

import pandas as pd 
import numpy as np 
import math 

x = float('nan')

%timeit x != x
44.8 ns ± 0.152 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

%timeit math.isnan(x)
94.2 ns ± 0.955 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

%timeit pd.isna(x)
281 ns ± 5.48 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

%timeit np.isnan(x)
1.38 µs ± 15.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

numpy.isnan(数字)告诉你它是不是NaN。

使用math.isnan:

>>> import math
>>> x = float('nan')
>>> math.isnan(x)
True