我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。

我可以将geom_line的轴向右移动吗?


当前回答

根据上面的答案和一些微调(无论它有什么价值),这里有一种通过sec_axis实现两个尺度的方法:

假设有一个简单的(完全虚构的)数据集dt:在五天的时间里,它追踪了被打断的次数VS工作效率:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(两列的范围相差大约5倍)。

下面的代码将画出它们占用整个y轴的两个级数:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

下面是结果(上面的代码+一些颜色调整):

重点(除了在指定y_scale时使用sec_axis之外)是在指定系列时将第二个数据系列的每个值与5相乘。为了在sec_axis定义中获得正确的标签,它需要除以5(并格式化)。因此,上述代码中的关键部分实际上是geom_line和~中的*5。sec_axis中的/5(一个除当前值的公式。5)。

相比之下(我不想在这里判断方法),这是两个图表叠加在一起的样子:

你可以自己判断哪一个能更好地传递信息(“不要打扰别人工作!”)。我想这是一个公平的决定方式。

这两个图像的完整代码(实际上并没有比上面更多,只是完成并准备运行)在这里:https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d更详细的解释在这里:https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html

其他回答

Kohske大约在3年前提供了解决这一挑战的技术骨干。在Stackoverflow [id: 18989001, 29235405, 21026598]的几个实例中已经讨论过这个主题及其解决方案的技术细节。因此,我将只提供一个特定的变化和一些解释性演练,使用上述解决方案。

让我们假设我们确实在组G1中有一些数据y1,而组G2中的一些数据y2以某种方式相关,例如范围/比例转换或添加了一些噪声。我们想把数据画在一张图上,左边是y1右边是y2。

  df <- data.frame(item=LETTERS[1:n],  y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!

> df
  item      y1         y2
1    A -0.8684 -19.154567
2    B  4.2242 219.092499
3    C -0.3181  18.849686
4    D  0.5797  46.945161
5    E -0.4875  -4.721973

如果我们现在把数据画在一起

ggplot(data=df, aes(label=item)) +
  theme_bw() + 
  geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
  geom_text(aes(x='G1', y=y1), color='blue') +
  geom_text(aes(x='G2', y=y2), color='red') +
  theme(legend.position='none', panel.grid=element_blank())

它并没有很好地对齐,因为小尺度y1明显被大尺度y2折叠了。

这里应对挑战的技巧是在技术上根据第一个尺度y1绘制两个数据集,但根据二级轴报告第二个数据集,并使用标签显示原始尺度y2。

因此,我们构建了第一个辅助函数CalcFudgeAxis,它计算并收集要显示的新轴的特征。这个函数可以被修改成任意的形式(这个函数只是将y2映射到y1的范围上)。

CalcFudgeAxis = function( y1, y2=y1) {
  Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
  ylim1 <- c(min(y1),max(y1))
  ylim2 <- c(min(y2),max(y2))    
  yf <- Cast2To1(y2)
  labelsyf <- pretty(y2)  
  return(list(
    yf=yf,
    labels=labelsyf,
    breaks=Cast2To1(labelsyf)
  ))
}

什么产生了一些:

> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

> FudgeAxis
$yf
[1] -0.4094344  4.6831656  0.4029175  1.0034664 -0.1009335

$labels
[1] -50   0  50 100 150 200 250

$breaks
[1] -1.068764  0.000000  1.068764  2.137529  3.206293  4.275058  5.343822


> cbind(df, FudgeAxis$yf)
  item      y1         y2 FudgeAxis$yf
1    A -0.8684 -19.154567   -0.4094344
2    B  4.2242 219.092499    4.6831656
3    C -0.3181  18.849686    0.4029175
4    D  0.5797  46.945161    1.0034664
5    E -0.4875  -4.721973   -0.1009335

现在我将Kohske的解决方案包装在第二个辅助函数PlotWithFudgeAxis中(我们将ggplot对象和新轴的辅助对象放入其中):

library(gtable)
library(grid)

PlotWithFudgeAxis = function( plot1, FudgeAxis) {
  # based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
  plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))

  #extract gtable
  g1<-ggplot_gtable(ggplot_build(plot1))
  g2<-ggplot_gtable(ggplot_build(plot2))

  #overlap the panel of the 2nd plot on that of the 1st plot
  pp<-c(subset(g1$layout, name=="panel", se=t:r))
  g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)

  ia <- which(g2$layout$name == "axis-l")
  ga <- g2$grobs[[ia]]
  ax <- ga$children[[2]]
  ax$widths <- rev(ax$widths)
  ax$grobs <- rev(ax$grobs)
  ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
  g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
  g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)

  grid.draw(g)
}

现在可以将所有内容放在一起:下面的代码显示了建议的解决方案如何在日常环境中使用。plot调用现在不再绘制原始数据y2,而是一个克隆版本yf(保存在预先计算的辅助对象FudgeAxis中),它以y1的规模运行。然后使用Kohske的辅助函数PlotWithFudgeAxis操作原始ggplot对象,以添加第二个轴,保留y2的刻度。它的情节和被操纵的情节一样。

FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

tmpPlot <- ggplot(data=df, aes(label=item)) +
      theme_bw() + 
      geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
      geom_text(aes(x='G1', y=y1), color='blue') +
      geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
      theme(legend.position='none', panel.grid=element_blank())

PlotWithFudgeAxis(tmpPlot, FudgeAxis)

现在它有两个轴,左边是y1右边是y2

Above solution is, to put it straight, a limited shaky hack. As it plays with the ggplot kernel it will throw some warnings that we exchange post-the-fact scales, etc. It has to be handled with care and may produce some undesired behaviour in another setting. As well one may need to fiddle around with the helper functions to get the layout as desired. The placement of the legend is such an issue (it would be placed between the panel and the new axis; this is why I droped it). The scaling / alignment of the 2 axis is as well a bit challenging: The code above works nicely when both scales contain the "0", else one axis gets shifted. So definetly with some opportunities to improve...

如果on想要保存图片,就必须将调用包装成设备打开/关闭:

png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()

It seemingly appears to be a simple question but it boggles around 2 fundamental questions. A) How to deal with a multi-scalar data while presenting in a comparative chart, and secondly, B) whether this can be done without some thumb rule practices of R programming such as i) melting data, ii) faceting, iii) adding another layer to existing one. The solution given below satisfies both the above conditions as it deals data without having to rescale it and secondly, the techniques mentioned are not used.

这是结果,

如果有兴趣了解更多关于此方法的信息,请点击下面的链接。 如何绘制一个2 y轴图表与条形并排而不重新缩放数据

从ggplot2 2.2.0开始,您可以添加如下的辅助轴(取自ggplot2 2.2.0公告):

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() + 
  scale_y_continuous(
    "mpg (US)", 
    sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")
  )

常见的用例有双y轴,例如,显示每月温度和降水的气体图。这里是一个简单的解决方案,从威震天的解决方案中推广,允许你设置变量的下限为零:

示例数据:

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
  )

将以下两个值设置为接近数据限制的值(您可以使用这些值来调整图形的位置;坐标轴仍然是正确的):

ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature

下面根据这些极限进行必要的计算,并制作出图本身:

b <- diff(ylim.prim)/diff(ylim.sec)
a <- ylim.prim[1] - b*ylim.sec[1]) # there was a bug here

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

如果你想确保红线对应右边的y轴,你可以在代码中添加一个主题句:

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  theme(axis.line.y.right = element_line(color = "red"), 
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"), 
        axis.title.y.right = element_text(color = "red")
        ) +
  ggtitle("Climatogram for Oslo (1961-1990)")

右轴的颜色:

我发现这个答案对我帮助最大,但发现有一些边缘情况,它似乎不能正确处理,特别是消极的情况,以及极限距离为0的情况(如果我们从最大/最小数据中获取极限,就会发生这种情况)。测试似乎表明,这是一致的

我使用以下代码。这里我假设我们有[x1,x2]我们想把它变换成[y1,y2]。我处理这个问题的方法是将[x1,x2]转换为[0,1](一个足够简单的转换),然后[0,1]转换为[y1,y2]。

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:

  ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature



  b <- diff(ylim.sec)/diff(ylim.prim)

#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
  ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
  ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}


ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b  + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

这里的关键部分是,我们用~((.-ylim.prim[1]) *b + ylim.sec[1])转换次要y轴,然后对实际值y = ylim.prim[1]+(Temp-ylim.sec[1])/b)应用逆。我们还应该确保limits = ylim.prim。