不管我们喜欢与否,我们开发人员中的许多人(如果不是大多数的话)都经常使用数据库,或者有一天可能不得不使用数据库。考虑到大量的误用和滥用,以及每天出现的大量与数据库相关的问题,公平地说,有一些概念是开发人员应该知道的——即使他们今天不设计或使用数据库。

关于数据库,开发人员和其他软件专业人员应该知道的一个重要概念是什么?


当前回答

索引的工作原理

这可能不是最重要的,但肯定是最被低估的话题。

索引的问题在于SQL教程通常根本不会提到它们,而且所有的玩具示例都可以在没有索引的情况下工作。

即使更有经验的开发人员也可以编写相当好的(和复杂的)SQL,而不需要了解更多关于索引的知识,而只是“索引使查询更快”。

这是因为SQL数据库作为黑盒的工作做得非常好:

告诉我你需要什么(给我SQL),我来处理。

这可以很好地检索正确的结果。SQL的作者不需要知道系统在幕后做什么——直到一切变得非常缓慢.....

这时索引就成了一个话题。但这通常很晚了,而且某些人(一些公司?)已经遇到了真正的问题。

这就是为什么我认为索引是在使用数据库时不能忘记的首要主题。不幸的是,它很容易忘记。

免责声明

这些论点是从我的免费电子书“使用索引,卢克”的序言中借来的。我花了很多时间来解释索引是如何工作的,以及如何正确地使用它们。

其他回答

索引的工作原理

这可能不是最重要的,但肯定是最被低估的话题。

索引的问题在于SQL教程通常根本不会提到它们,而且所有的玩具示例都可以在没有索引的情况下工作。

即使更有经验的开发人员也可以编写相当好的(和复杂的)SQL,而不需要了解更多关于索引的知识,而只是“索引使查询更快”。

这是因为SQL数据库作为黑盒的工作做得非常好:

告诉我你需要什么(给我SQL),我来处理。

这可以很好地检索正确的结果。SQL的作者不需要知道系统在幕后做什么——直到一切变得非常缓慢.....

这时索引就成了一个话题。但这通常很晚了,而且某些人(一些公司?)已经遇到了真正的问题。

这就是为什么我认为索引是在使用数据库时不能忘记的首要主题。不幸的是,它很容易忘记。

免责声明

这些论点是从我的免费电子书“使用索引,卢克”的序言中借来的。我花了很多时间来解释索引是如何工作的,以及如何正确地使用它们。

首先,开发人员需要了解一些关于数据库的知识。它们不仅仅是输入SQL并得到结果集的神奇设备,而是具有自己的逻辑和癖好的非常复杂的软件。

其次,针对不同的目的有不同的数据库设置。如果有可用的数据仓库,则不希望开发人员从联机事务数据库生成历史报告。

第三,开发人员需要了解基本的SQL,包括连接。

除此之外,它还取决于开发人员参与的程度。我曾经工作过,我是开发人员,实际上是DBA, DBA只是在走道的另一边,而DBA则在各自的领域。(我不喜欢第三个。)假设开发人员参与了数据库设计:

他们需要了解基本的标准化,至少是前三种标准形式。除此之外,请找一个DBA。对于那些有过美国法庭(以及随便看的电视节目)经验的人来说,有一句便于记忆的话:“依靠钥匙,全部的钥匙,除了钥匙别无其他,帮你一把,科德。”

他们需要了解索引,我的意思是他们应该知道他们需要什么索引,以及它们可能如何影响性能。这意味着不要使用无用的索引,但不要害怕添加它们来辅助查询。任何进一步的工作(如余额)都应该留给DBA。

他们需要理解对数据完整性的需求,并能够指出他们在哪里验证数据,以及如果发现问题他们正在做什么。这并不一定要在数据库中(在数据库中很难向用户发出有意义的错误消息),但必须在某个地方。

他们应该具备如何制定计划的基本知识,以及如何大体阅读计划(至少足以判断算法是否有效)。

他们应该模糊地知道什么是触发器,什么是视图,以及可以对数据库进行分区。他们不需要任何细节,但他们需要知道如何向DBA询问这些事情。

他们当然应该知道不要干涉生产数据,或生产代码,或类似的东西,他们应该知道所有的源代码都进入VCS。

毫无疑问,我忘记了一些事情,但是一般的开发人员不需要是DBA,前提是手头有一个真正的DBA。

关于以下对Walter M。的回答:

“写得很好!历史视角对于当时没有做数据库工作的人(比如我)来说非常有用。”

历史观点在某种意义上是绝对重要的。“忘记历史的人,注定要重蹈覆辙。”XML重复着过去的层次错误,图形数据库重复着过去的网络错误,OO系统迫使用户使用层次模型,而每个人即使只有十分之一的大脑都应该知道层次模型不适合真实世界的通用表示,等等,等等。

至于问题本身:

每个数据库开发人员都应该知道“关系型”不等于“SQL”。然后他们就会明白为什么他们会被DBMS供应商如此失望,为什么他们应该告诉同样的供应商想出更好的东西(例如真正的关系型DBMS),如果他们想继续从他们的客户那里为这些蹩脚的软件吸走大量的钱)。

每个数据库开发人员都应该了解关系代数的所有知识。这样,就不会再有开发者在Stack Overflow网站上发布“我不知道如何做我的工作,希望别人帮我做”这样的愚蠢问题了。

归一化

我总是很沮丧地看到有人努力编写一个过度复杂的查询,而这个查询用标准化的设计可以完全简单明了(“显示每个地区的总销售额。”)。

如果您在一开始就理解了这一点,并相应地进行设计,您将在以后为自己省去许多痛苦。在规范化之后,很容易对性能进行反规范化;要规范化一个从一开始就不是这样设计的数据库并不容易。

至少,您应该知道3NF是什么以及如何实现它。对于大多数事务性数据库,这是使查询易于编写和保持良好性能之间的一个很好的平衡。

每个开发人员都应该知道这是错误的:“分析数据库操作与分析代码完全不同。”

在传统意义上有一个明确的Big-O。当你做一个EXPLAIN PLAN(或等效)时,你看到的是算法。有些算法涉及嵌套循环,并且是O(n ^ 2)。其他算法涉及到b树查找,并且是O(n log n)。

这是非常非常严重的。这是理解为什么索引很重要的关键。这对于理解速度-标准化-非标准化之间的权衡至关重要。这对于理解为什么数据仓库使用星型模式是非常重要的,而星型模式并没有对事务更新进行规范化。

如果您不清楚所使用的算法,请执行以下操作。停止。解释查询执行计划。相应调整指标。

同样,结论是:索引越多越好。

有时,专注于一个操作的索引会降低其他操作的速度。根据这两个操作的比例,添加一个索引可能有良好的效果,也可能没有整体影响,或者对整体性能不利。