我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
当前回答
df_gdp.columns
Index([u'Country', u'Country Code', u'Indicator Name', u'Indicator Code', u'1960', u'1961', u'1962', u'1963', u'1964', u'1965', u'1966', u'1967', u'1968', u'1969', u'1970', u'1971', u'1972', u'1973', u'1974', u'1975', u'1976', u'1977', u'1978', u'1979', u'1980', u'1981', u'1982', u'1983', u'1984', u'1985', u'1986', u'1987', u'1988', u'1989', u'1990', u'1991', u'1992', u'1993', u'1994', u'1995', u'1996', u'1997', u'1998', u'1999', u'2000', u'2001', u'2002', u'2003', u'2004', u'2005', u'2006', u'2007', u'2008', u'2009', u'2010', u'2011', u'2012', u'2013', u'2014', u'2015', u'2016'], dtype='object')
df_gdp[df_gdp["Country Code"] == "USA"]["1996"].values[0]
8100000000000.0
其他回答
这并不需要太复杂:
val = df.loc[df.wd==1, 'col_name'].values[0]
将它转换为整数对我有用:
int(sub_df.iloc[0])
我所找到的最快和最简单的方法如下。501表示行索引。
df.at[501, 'column_name']
df.get_value(501, 'column_name')
要获得完整行的值为JSON(而不是一个Serie):
row = df.iloc[0]
像下面这样使用to_json方法:
row.to_json()
使用.item()将返回一个标量(而不是Series),并且它仅在选中单个元素时有效。它比.values[0]安全得多,后者将返回第一个元素,而不管选择了多少个元素。
>>> df = pd.DataFrame({'a': [1,2,2], 'b': [4,5,6]})
>>> df[df['a'] == 1]['a'] # Returns a Series
0 1
Name: a, dtype: int64
>>> df[df['a'] == 1]['a'].item()
1
>>> df2 = df[df['a'] == 2]
>>> df2['b']
1 5
2 6
Name: b, dtype: int64
>>> df2['b'].values[0]
5
>>> df2['b'].item()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/pandas/core/base.py", line 331, in item
raise ValueError("can only convert an array of size 1 to a Python scalar")
ValueError: can only convert an array of size 1 to a Python scalar