我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
当前回答
对于pandas 0.10(其中iloc不可用),过滤DF并获取VALUE列的第一行数据:
df_filt = df[df['C1'] == C1val & df['C2'] == C2val]
result = df_filt.get_value(df_filt.index[0],'VALUE')
如果过滤了多个行,则获取第一行的值。如果筛选结果为空数据帧,则会出现异常。
其他回答
对于pandas 0.10(其中iloc不可用),过滤DF并获取VALUE列的第一行数据:
df_filt = df[df['C1'] == C1val & df['C2'] == C2val]
result = df_filt.get_value(df_filt.index[0],'VALUE')
如果过滤了多个行,则获取第一行的值。如果筛选结果为空数据帧,则会出现异常。
大多数答案都是使用iloc,它适合按位置选择。
如果需要按标签选择,loc会更方便。
显式获取值(相当于已弃用 df.get_value (' a ', ' ')) #这也等价于df1.at['a',' a'] 在[55]:df1中。loc [' a ', ' ') [55]: 0.13200317033032932
如果你有一个只有一行的DataFrame,那么使用iloc访问第一行作为Series,然后使用列名访问值:
In [3]: sub_df
Out[3]:
A B
2 -0.133653 -0.030854
In [4]: sub_df.iloc[0]
Out[4]:
A -0.133653
B -0.030854
Name: 2, dtype: float64
In [5]: sub_df.iloc[0]['A']
Out[5]: -0.13365288513107493
你可以把你的1x1数据帧转换成一个NumPy数组,然后访问该数组的第一个也是唯一的值:
val = d2['col_name'].values[0]
我需要一个单元格的值,按列名和索引名选择。 这个解决方案对我很有效:
original_conversion_frequency.loc [1:] . values [0]