冻结集就是冻结集。 冻结列表可以是元组。 冷冻字典会是什么?一个不可变的、可哈希的字典。

我猜它可能是collections.namedtuple之类的东西,但那更像是一个冻结的字典(一个半冻结的字典)。不是吗?

一个“frozendict”应该是一个冻结的字典,它应该有键,值,get等,并支持in, for等。

更新: 在这里:https://www.python.org/dev/peps/pep-0603


当前回答

每次写这样的函数时,我都会想到frozendict:

def do_something(blah, optional_dict_parm=None):
    if optional_dict_parm is None:
        optional_dict_parm = {}

其他回答

你可以使用utispie包装的冷冻液:

>>> from utilspie.collectionsutils import frozendict

>>> my_dict = frozendict({1: 3, 4: 5})
>>> my_dict  # object of `frozendict` type
frozendict({1: 3, 4: 5})

# Hashable
>>> {my_dict: 4}
{frozendict({1: 3, 4: 5}): 4}

# Immutable
>>> my_dict[1] = 5
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/mquadri/workspace/utilspie/utilspie/collectionsutils/collections_utils.py", line 44, in __setitem__
    self.__setitem__.__name__, type(self).__name__))
AttributeError: You can not call '__setitem__()' for 'frozendict' object

根据文件:

frozendict(dict_obj):接受dict类型的obj并返回一个可哈希且不可变的dict

假设字典的键和值本身是不可变的(例如字符串),那么:

>>> d
{'forever': 'atones', 'minks': 'cards', 'overhands': 'warranted', 
 'hardhearted': 'tartly', 'gradations': 'snorkeled'}
>>> t = tuple((k, d[k]) for k in sorted(d.keys()))
>>> hash(t)
1524953596

Freeze实现了可哈希的、类型提示的冻结集合(dict、list和set),并将递归地冻结你给他们的数据(如果可能的话)。

pip install frz

用法:

from freeze import FDict

a_mutable_dict = {
    "list": [1, 2],
    "set": {3, 4},
}

a_frozen_dict = FDict(a_mutable_dict)

print(repr(a_frozen_dict)) 
# FDict: {'list': FList: (1, 2), 'set': FSet: {3, 4}}

namedtuple的主要缺点是需要在使用之前指定它,因此对于单一用例来说不太方便。

然而,有一种实用的变通方法可以用来处理许多此类情况。让我们假设你想有一个不可变的等价物如下dict:

MY_CONSTANT = {
    'something': 123,
    'something_else': 456
}

可以这样模拟:

from collections import namedtuple

MY_CONSTANT = namedtuple('MyConstant', 'something something_else')(123, 456)

甚至还可以编写一个辅助函数来实现自动化:

def freeze_dict(data):
    from collections import namedtuple
    keys = sorted(data.keys())
    frozen_type = namedtuple(''.join(keys), keys)
    return frozen_type(**data)

a = {'foo':'bar', 'x':'y'}
fa = freeze_dict(data)
assert a['foo'] == fa.foo

当然,这只适用于平面字典,但实现递归版本应该不会太难。

子类化dict类型

我在野外(github)看到了这种模式,想提一下:

class FrozenDict(dict):
    def __init__(self, *args, **kwargs):
        self._hash = None
        super(FrozenDict, self).__init__(*args, **kwargs)

    def __hash__(self):
        if self._hash is None:
            self._hash = hash(tuple(sorted(self.items())))  # iteritems() on py2
        return self._hash

    def _immutable(self, *args, **kws):
        raise TypeError('cannot change object - object is immutable')

    # makes (deep)copy alot more efficient
    def __copy__(self):
        return self

    def __deepcopy__(self, memo=None):
        if memo is not None:
            memo[id(self)] = self
        return self

    __setitem__ = _immutable
    __delitem__ = _immutable
    pop = _immutable
    popitem = _immutable
    clear = _immutable
    update = _immutable
    setdefault = _immutable

使用示例:

d1 = FrozenDict({'a': 1, 'b': 2})
d2 = FrozenDict({'a': 1, 'b': 2})
d1.keys() 
assert isinstance(d1, dict)
assert len(set([d1, d2])) == 1  # hashable

Pros

支持get()、keys()、items() (py2上的iteritems())以及dict中的所有功能,而无需显式地实现它们 使用内部dict,这意味着性能(dict在CPython中是用c编写的) 优雅简单,没有黑魔法 isinstance(my_frozen_dict, dict)返回True -尽管python鼓励使用isinstance()对许多包进行duck-typing,但这可以节省许多调整和自定义

Cons

任何子类都可以覆盖它或在内部访问它(你不能真正100%保护python中的某些东西,你应该相信你的用户并提供良好的文档)。 如果你关心速度,你可能想让__hash__更快一点。