我知道这个问题不太具体。
我想要的只是有人告诉我如何将普通的归并排序转换为就地归并排序(或具有常量额外空间开销的归并排序)。
我所能找到的(在网上)都是说“这太复杂”或“超出了本文的范围”的页面。
唯一已知的就地合并(没有任何额外空间)的方法太复杂,无法简化为实用程序。(从这里拍摄)
即使它太复杂,如何使归并排序的基本概念是什么?
我知道这个问题不太具体。
我想要的只是有人告诉我如何将普通的归并排序转换为就地归并排序(或具有常量额外空间开销的归并排序)。
我所能找到的(在网上)都是说“这太复杂”或“超出了本文的范围”的页面。
唯一已知的就地合并(没有任何额外空间)的方法太复杂,无法简化为实用程序。(从这里拍摄)
即使它太复杂,如何使归并排序的基本概念是什么?
当前回答
包括它的“大结果”,本文描述了就地归并排序的几个变体(PDF):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5514&rep=rep1&type=pdf
少移动的就地排序
于尔基·卡塔贾宁、托米·
证明了n 元素可以使用O(1)进行排序 额外空间,O(n log n / log log n) 元素移动,nlog2n + O(nlog Log n)比较。这是第一次 需要就地排序算法 O (nlogn)在最坏情况下移动 同时保证O(n log n) 比较,不过由于不变 所涉及的因素是算法 主要是理论兴趣。
我认为这也是相关的。我有一份打印本,是同事传给我的,但我还没读过。它似乎涵盖了基本理论,但我对这个主题不够熟悉,无法判断它有多全面:
http://comjnl.oxfordjournals.org/cgi/content/abstract/38/8/681
最优稳定合并
安东尼奥斯·西姆沃尼斯
本文介绍了如何稳定地进行归并 两个序列A和B,大小为m和 n, m≤n,分别为O(m+n) 作业,O (mlog (n / m + 1)) 比较和只使用一个常数 额外空间的数量。这 结果匹配所有已知的下界…
其他回答
关键的一步是让合并本身就位。这并不像那些来源说的那么难,但当你尝试的时候,你会失去一些东西。
看看合并的一个步骤:
[…list-sorted…| x列表…| y…发行b…]
我们知道这个排序的序列比其他的都小,x比A中的其他所有的都小,y也比b中的其他所有的都小。在x小于等于y的情况下,你只需要把指针移到A的起始点上。在y小于x的情况下,你必须将y洗牌过整个A来排序。最后一步是代价高昂的原因(退化情况除外)。
它通常更便宜(特别是当数组每个元素实际上只包含单个单词时,例如,一个指向字符串或结构的指针),用一些空间换取时间,并使用一个单独的临时数组来来回排序。
包括它的“大结果”,本文描述了就地归并排序的几个变体(PDF):
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5514&rep=rep1&type=pdf
少移动的就地排序
于尔基·卡塔贾宁、托米·
证明了n 元素可以使用O(1)进行排序 额外空间,O(n log n / log log n) 元素移动,nlog2n + O(nlog Log n)比较。这是第一次 需要就地排序算法 O (nlogn)在最坏情况下移动 同时保证O(n log n) 比较,不过由于不变 所涉及的因素是算法 主要是理论兴趣。
我认为这也是相关的。我有一份打印本,是同事传给我的,但我还没读过。它似乎涵盖了基本理论,但我对这个主题不够熟悉,无法判断它有多全面:
http://comjnl.oxfordjournals.org/cgi/content/abstract/38/8/681
最优稳定合并
安东尼奥斯·西姆沃尼斯
本文介绍了如何稳定地进行归并 两个序列A和B,大小为m和 n, m≤n,分别为O(m+n) 作业,O (mlog (n / m + 1)) 比较和只使用一个常数 额外空间的数量。这 结果匹配所有已知的下界…
它确实不容易或不有效,我建议您不要这样做,除非您真的必须这样做(您可能不必这样做,除非这是家庭作业,因为就地合并的应用程序主要是理论性的)。你不能用快速排序代替吗?无论如何,通过一些简单的优化,快速排序都会更快,而且它额外的内存是O(log N)。
不管怎样,如果你一定要做,那就必须做。这是我的发现:一和二。我不熟悉就地归并排序,但它的基本思想似乎是使用旋转来方便合并两个数组,而不使用额外的内存。
注意,这甚至比传统的归并排序还要慢。
利用c++ std::inplace_merge,就地归并排序可以实现如下:
template< class _Type >
inline void merge_sort_inplace(_Type* src, size_t l, size_t r)
{
if (r <= l) return;
size_t m = l + ( r - l ) / 2; // computes the average without overflow
merge_sort_inplace(src, l, m);
merge_sort_inplace(src, m + 1, r);
std::inplace_merge(src + l, src + m + 1, src + r + 1);
}
更多的排序算法,包括并行实现,可以在https://github.com/DragonSpit/ParallelAlgorithms repo中找到,它是开源的,是免费的。
这是我的C版本:
void mergesort(int *a, int len) {
int temp, listsize, xsize;
for (listsize = 1; listsize <= len; listsize*=2) {
for (int i = 0, j = listsize; (j+listsize) <= len; i += (listsize*2), j += (listsize*2)) {
merge(& a[i], listsize, listsize);
}
}
listsize /= 2;
xsize = len % listsize;
if (xsize > 1)
mergesort(& a[len-xsize], xsize);
merge(a, listsize, xsize);
}
void merge(int *a, int sizei, int sizej) {
int temp;
int ii = 0;
int ji = sizei;
int flength = sizei+sizej;
for (int f = 0; f < (flength-1); f++) {
if (sizei == 0 || sizej == 0)
break;
if (a[ii] < a[ji]) {
ii++;
sizei--;
}
else {
temp = a[ji];
for (int z = (ji-1); z >= ii; z--)
a[z+1] = a[z];
ii++;
a[f] = temp;
ji++;
sizej--;
}
}
}