我在学校里很难理解递归。每当教授谈到它的时候,我似乎都懂了,但当我自己尝试的时候,它完全震撼了我的大脑。

我整晚都在尝试着解决《Towers of Hanoi》这款游戏,结果完全出乎我的意料。我的课本只有大约30页关于递归的内容,所以它不是很有用。有人知道哪些书籍或资源可以帮助澄清这个话题吗?


当前回答

你在用哪本书?

关于算法的标准教科书是Cormen & Rivest。我的经验是,它很好地教授了递归。

递归是编程中较难掌握的部分之一,虽然它确实需要本能,但它是可以学习的。但它确实需要一个好的描述,好的例子和好的插图。

此外,30页通常是很多的,30页是用一种编程语言编写的。在你从一本普通的书中理解递归之前,不要尝试用C或Java学习递归。

其他回答

递归函数就像弹簧,每次调用都要压缩一点。在每一步中,您将一些信息(当前上下文)放在堆栈上。当到达最后一步时,释放弹簧,立即收集所有值(上下文)!

不确定这个比喻是否有效…: -)

无论如何,除了经典的例子(阶乘是最糟糕的例子,因为它效率低,很容易被平化,Fibonacci, Hanoi…),这些都有点人为(我很少,如果有的话,在实际编程案例中使用它们),看看它真正被使用的地方是有趣的。

A very common case is to walk a tree (or a graph, but trees are more common, in general). For example, a folder hierarchy: to list the files, you iterate on them. If you find a sub-directory, the function listing the files call itself with the new folder as argument. When coming back from listing this new folder (and its sub-folders!), it resumes its context, to the next file (or folder). Another concrete case is when drawing a hierarchy of GUI components: it is common to have containers, like panes, to hold components which can be panes too, or compound components, etc. The painting routine calls recursively the paint function of each component, which calls the paint function of all the components it holds, etc.

不确定我是否很清楚,但我喜欢展示现实世界中教材的使用,因为这是我过去偶然发现的东西。

递归

方法A调用方法A调用方法A,最终这些方法A中的一个不会调用并退出,但这是递归,因为有东西调用了它自己。

递归的例子,我想打印出硬盘驱动器上的每个文件夹名称:(在c#中)

public void PrintFolderNames(DirectoryInfo directory)
{
    Console.WriteLine(directory.Name);

    DirectoryInfo[] children = directory.GetDirectories();

    foreach(var child in children)
    {
        PrintFolderNames(child); // See we call ourself here...
    }
}

子函数隐式地使用递归,例如:

去迪士尼乐园自驾游

我们到了吗?(没有) 我们到了吗?(很快) 我们到了吗?(快了……) 我们到了吗? 我们到了吗?(!!!!!)

这时孩子就睡着了……

这个倒数函数是一个简单的例子:

倒计时()函数 { 返回(参数[0]> 0 ? ( Console.log(参数[0]),倒计时(参数[0]- 1)): “完成” ); } 倒计时(10);

霍夫施塔特定律也适用于软件项目。

The essence of human language is, according to Chomsky, the ability of finite brains to produce what he considers to be infinite grammars. By this he means not only that there is no upper limit on what we can say, but that there is no upper limit on the number of sentences our language has, there's no upper limit on the size of any particular sentence. Chomsky has claimed that the fundamental tool that underlies all of this creativity of human language is recursion: the ability for one phrase to reoccur inside another phrase of the same type. If I say "John's brother's house", I have a noun, "house", which occurs in a noun phrase, "brother's house", and that noun phrase occurs in another noun phrase, "John's brother's house". This makes a lot of sense, and it's an interesting property of human language.

参考文献

递归与人类思想

你在用哪本书?

关于算法的标准教科书是Cormen & Rivest。我的经验是,它很好地教授了递归。

递归是编程中较难掌握的部分之一,虽然它确实需要本能,但它是可以学习的。但它确实需要一个好的描述,好的例子和好的插图。

此外,30页通常是很多的,30页是用一种编程语言编写的。在你从一本普通的书中理解递归之前,不要尝试用C或Java学习递归。

构建递归函数的真正数学方法如下:

1:假设你有一个函数对f(n-1)是正确的,构造f使f(n)是正确的。 2:构造f,使得f(1)是正确的。

This is how you can prove that the function is correct, mathematically, and it's called Induction. It is equivalent to have different base cases, or more complicated functions on multiple variables). It is also equivalent to imagine that f(x) is correct for all x Now for a "simple" example. Build a function that can determine if it is possible to have a coin combination of 5 cents and 7 cents to make x cents. For example, it's possible to have 17 cents by 2x5 + 1x7, but impossible to have 16 cents. Now imagine you have a function that tells you if it's possible to create x cents, as long as x < n. Call this function can_create_coins_small. It should be fairly simple to imagine how to make the function for n. Now build your function: bool can_create_coins(int n) { if (n >= 7 && can_create_coins_small(n-7)) return true; else if (n >= 5 && can_create_coins_small(n-5)) return true; else return false; } The trick here is to realize that the fact that can_create_coins works for n, means that you can substitute can_create_coins for can_create_coins_small, giving: bool can_create_coins(int n) { if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } One last thing to do is to have a base case to stop infinite recursion. Note that if you are trying to create 0 cents, then that is possible by having no coins. Adding this condition gives: bool can_create_coins(int n) { if (n == 0) return true; else if (n >= 7 && can_create_coins(n-7)) return true; else if (n >= 5 && can_create_coins(n-5)) return true; else return false; } It can be proven that this function will always return, using a method called infinite descent, but that isn't necessary here. You can imagine that f(n) only calls lower values of n, and will always eventually reach 0. To use this information to solve your Tower of Hanoi problem, I think the trick is to assume you have a function to move n-1 tablets from a to b (for any a/b), trying to move n tables from a to b.