我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
当前回答
我研究了很多,因为我需要使用numpy。在我的一个学校项目中,我需要将数组初始化为空…我在Stack Overflow上没有找到任何相关的答案,所以我开始涂鸦。
# Initialize your variable as an empty list first
In [32]: x=[]
# and now cast it as a numpy ndarray
In [33]: x=np.array(x)
结果将是:
In [34]: x
Out[34]: array([], dtype=float64)
因此,可以直接初始化np数组,如下所示:
In [36]: x= np.array([], dtype=np.float64)
我希望这能有所帮助。
其他回答
根据你使用它的目的,你可能需要指定数据类型(参见'dtype')。
例如,要创建一个8位值的2D数组(适合用作单色图像):
myarray = numpy.empty(shape=(H,W),dtype='u1')
对于RGB图像,包括形状中的颜色通道数:shape=(H,W,3)
您还可以考虑使用numpy进行零初始化。0代替numpy.empty。请看这里的说明。
如果你完全不知道数组的最终大小,你可以像这样增加数组的大小:
my_arr = numpy.zeros((0,5))
for i in range(3):
my_arr=numpy.concatenate( ( my_arr, numpy.ones((1,5)) ) )
print(my_arr)
[[ 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1.]]
注意第一行的0。 numpy。Append是另一个选项。它调用numpy.concatenate。
下面是一些使numpys看起来更像list的方法
np_arr = np.array([])
np_arr = np.append(np_arr , 2)
np_arr = np.append(np_arr , 24)
print(np_arr)
输出:array([2.], 24。)
这是有效使用NumPy的错误思维模式。NumPy数组存储在连续的内存块中。要向现有数组追加行或列,需要将整个数组复制到一个新的内存块,为存储的新元素创建间隙。如果重复这样做,效率是非常低的。
与其追加行,不如分配一个适当大小的数组,然后逐行赋值:
>>> import numpy as np
>>> a = np.zeros(shape=(3, 2))
>>> a
array([[ 0., 0.],
[ 0., 0.],
[ 0., 0.]])
>>> a[0] = [1, 2]
>>> a[1] = [3, 4]
>>> a[2] = [5, 6]
>>> a
array([[ 1., 2.],
[ 3., 4.],
[ 5., 6.]])
最简单的方法
输入:
import numpy as np
data = np.zeros((0, 0), dtype=float) # (rows,cols)
data.shape
输出: (0,0)
输入:
for i in range(n_files):
data = np.append(data, new_data, axis = 0)