在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

这个公式很容易用

distance = np.sqrt(np.sum(np.square(a-b)))

它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。

其他回答

有了a和b,你可以用also:

distance = np.sqrt(np.sum((a-b)**2))
import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]

首先将list更改为numpy数组,并像这样做:print(np.linalg.norm(np.array(a) - np.array(b)))。第二种方法直接从python列表as: print(np.linalg.norm(np.subtract(a,b)))

你可以减去向量,然后内积。

以你为榜样,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)

这里有一些简洁的Python欧几里得距离代码,给出了Python中以列表表示的两个点。

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

对于大量的距离,我能想到的最快的解决方案是使用numexpr。在我的机器上,它比使用numpy einsum更快:

import numexpr as ne
import numpy as np
np.sqrt(ne.evaluate("sum((a_min_b)**2,axis=1)"))