在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

使用numpy.linalg.norm:

dist = numpy.linalg.norm(a-b)

这是因为欧氏距离是l2范数,而numpy.linalg.norm中ord参数的默认值是2。 要了解更多理论,请参阅数据挖掘介绍:

其他回答

使用scipy.spatial.distance.euclidean:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。

我把它贴在这里只是为了参考。

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

可以像下面这样做。我不知道它有多快,但它没有使用NumPy。

from math import sqrt
a = (1, 2, 3) # Data point 1
b = (4, 5, 6) # Data point 2
print sqrt(sum( (a - b)**2 for a, b in zip(a, b)))

计算多维空间的欧氏距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845

你可以减去向量,然后内积。

以你为榜样,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)