人们使用什么技巧来管理交互式R会话的可用内存?我使用下面的函数[基于Petr Pikal和David Hinds在2004年发布的r-help列表]来列出(和/或排序)最大的对象,并偶尔rm()其中一些对象。但到目前为止最有效的解决办法是……在64位Linux下运行,有充足的内存。

大家还有什么想分享的妙招吗?请每人寄一份。

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.dim)
    names(out) <- c("Type", "Size", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

当前回答

运行

for (i in 1:10) 
    gc(reset = T)

还可以帮助R释放未使用但仍未释放的内存。

其他回答

为了进一步说明频繁重启的常见策略,我们可以使用littler,它允许我们直接从命令行运行简单的表达式。这里有一个例子,我有时会用不同的BLAS为一个简单的交叉刺计时。

 r -e'N<-3*10^3; M<-matrix(rnorm(N*N),ncol=N); print(system.time(crossprod(M)))'

同样的,

 r -lMatrix -e'example(spMatrix)'

加载Matrix包(通过——packages | -l开关)并运行spMatrix函数的示例。由于总是“新鲜”开始,这个方法在包开发过程中也是一个很好的测试。

最后但并非最不重要的是,r在脚本中使用'#!/usr/bin/r shebang-header。Rscript是little不可用的替代方案(例如在Windows上)。

我喜欢Dirk的.ls.objects()脚本,但我总是眯着眼睛数大小列中的字符。所以我做了一些丑陋的hack,使它呈现出漂亮的格式大小:

.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.prettysize <- sapply(obj.size, function(r) prettyNum(r, big.mark = ",") )
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size,obj.prettysize, obj.dim)
    names(out) <- c("Type", "Size", "PrettySize", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
        out <- out[c("Type", "PrettySize", "Rows", "Columns")]
        names(out) <- c("Type", "Size", "Rows", "Columns")
    if (head)
        out <- head(out, n)
    out
}

确保在可重复的脚本中记录您的工作。不时地重新打开R,然后source()您的脚本。您将清除不再使用的任何东西,作为一个额外的好处,您将测试您的代码。

我在推特上看到了这个,觉得德克的功能太棒了!根据JD Long的回答,为了方便用户阅读,我会这样做:

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.prettysize <- napply(names, function(x) {
                           format(utils::object.size(x), units = "auto") })
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.prettysize, obj.dim)
    names(out) <- c("Type", "Size", "PrettySize", "Length/Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
    
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

lsos()

结果如下:

                      Type   Size PrettySize Length/Rows Columns
pca.res                 PCA 790128   771.6 Kb          7      NA
DF               data.frame 271040   264.7 Kb        669      50
factor.AgeGender   factanal  12888    12.6 Kb         12      NA
dates            data.frame   9016     8.8 Kb        669       2
sd.                 numeric   3808     3.7 Kb         51      NA
napply             function   2256     2.2 Kb         NA      NA
lsos               function   1944     1.9 Kb         NA      NA
load               loadings   1768     1.7 Kb         12       2
ind.sup             integer    448  448 bytes        102      NA
x                 character     96   96 bytes          1      NA

注:我补充的主要部分是(再次改编自JD的回答):

obj.prettysize <- napply(names, function(x) {
                           print(object.size(x), units = "auto") })

这是个好把戏。

另一个建议是尽可能使用内存效率高的对象:例如,使用矩阵而不是data.frame。

这并没有真正解决内存管理问题,但是一个不为人所知的重要函数是memory.limit()。可以使用memory.limit(size=2500)命令增加默认值,这里的大小以MB为单位。正如Dirk提到的,为了真正利用这一点,您需要使用64位。