人们使用什么技巧来管理交互式R会话的可用内存?我使用下面的函数[基于Petr Pikal和David Hinds在2004年发布的r-help列表]来列出(和/或排序)最大的对象,并偶尔rm()其中一些对象。但到目前为止最有效的解决办法是……在64位Linux下运行,有充足的内存。

大家还有什么想分享的妙招吗?请每人寄一份。

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.dim)
    names(out) <- c("Type", "Size", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

当前回答

gData包中的llfunction也可以显示每个对象的内存使用情况。

gdata::ll(unit='MB')

其他回答

使用knitr和将脚本放在Rmd块中也可以获得一些好处。

我通常将代码划分为不同的块,并选择将检查点保存到缓存或RDS文件中

在那里,你可以设置一个块被保存到“缓存”,或者你可以决定运行或不运行一个特定的块。这样,在第一次运行时,你只能处理“第一部分”,而在另一次执行时,你只能选择“第二部分”,等等。

例子:

part1
```{r corpus, warning=FALSE, cache=TRUE, message=FALSE, eval=TRUE}
corpusTw <- corpus(twitter)  # build the corpus
```
part2
```{r trigrams, warning=FALSE, cache=TRUE, message=FALSE, eval=FALSE}
dfmTw <- dfm(corpusTw, verbose=TRUE, removeTwitter=TRUE, ngrams=3)
```

作为一个副作用,这也可以让你在可重复性方面省去一些麻烦:)

这是个好把戏。

另一个建议是尽可能使用内存效率高的对象:例如,使用矩阵而不是data.frame。

这并没有真正解决内存管理问题,但是一个不为人所知的重要函数是memory.limit()。可以使用memory.limit(size=2500)命令增加默认值,这里的大小以MB为单位。正如Dirk提到的,为了真正利用这一点,您需要使用64位。

如果真的想避免泄漏,应该避免在全局环境中创建任何大对象。

我通常做的是有一个函数来完成这项工作并返回NULL -所有数据都在这个函数或它调用的其他函数中读取和操作。

当我在一个有很多中间步骤的大型项目中工作时,我会尽量减少对象的数量。而不是创建许多唯一的对象

Dataframe -> step1 -> step2 -> step3 -> result

raster->多pliedrast -> meanRastF -> sqrtRast -> resultRast

我使用临时对象,我称之为temp。

Dataframe -> temp -> temp -> temp -> result

这样就少了一些中间文件,多了一些概览。

raster  <- raster('file.tif')
temp <- raster * 10
temp <- mean(temp)
resultRast <- sqrt(temp)

为了节省更多内存,我可以在不再需要时简单地删除temp。

rm(temp)

如果我需要几个中间文件,我使用temp1, temp2, temp3。

对于测试,我使用test, test2,…

Tip for dealing with objects requiring heavy intermediate calculation: When using objects that require a lot of heavy calculation and intermediate steps to create, I often find it useful to write a chunk of code with the function to create the object, and then a separate chunk of code that gives me the option either to generate and save the object as an rmd file, or load it externally from an rmd file I have already previously saved. This is especially easy to do in R Markdown using the following code-chunk structure.

```{r Create OBJECT}

COMPLICATED.FUNCTION <- function(...) { Do heavy calculations needing lots of memory;
                                        Output OBJECT; }

```
```{r Generate or load OBJECT}

LOAD <- TRUE
SAVE <- TRUE
#NOTE: Set LOAD to TRUE if you want to load saved file
#NOTE: Set LOAD to FALSE if you want to generate the object from scratch
#NOTE: Set SAVE to TRUE if you want to save the object externally

if(LOAD) { 
  OBJECT <- readRDS(file = 'MySavedObject.rds') 
} else {
  OBJECT <- COMPLICATED.FUNCTION(x, y, z)
  if (SAVE) { saveRDS(file = 'MySavedObject.rds', object = OBJECT) } }

```

With this code structure, all I need to do is to change LOAD depending on whether I want to generate the object, or load it directly from an existing saved file. (Of course, I have to generate it and save it the first time, but after this I have the option of loading it.) Setting LOAD <- TRUE bypasses use of my complicated function and avoids all of the heavy computation therein. This method still requires enough memory to store the object of interest, but it saves you from having to calculate it each time you run your code. For objects that require a lot of heavy calculation of intermediate steps (e.g., for calculations involving loops over large arrays) this can save a substantial amount of time and computation.